EVQIE A Touch of Applesoft BASIC

78 %uf RND ¢19 % 48, RHND t:\ ¥

2860

—

A COUNT = COUNT +_1
98 IF COUNT < 58 THEN GOTO 489

Appe llc, Apple lle, Appe |

Apple _I—I A Touch of Applesoft BASIC

W APPLE COAMPUTER, INC.

© Copyright 1986, Apple
Computer, Inc, for all non-
lexiual malerial, graphics,
figures, photographs, and all
computer program listings or
wxde in any fomm, including
object and source code. All
nghts reserved.

Apple and the Apple logo are
registered Irademarks of Apple
Comnputer, Inc.

Macintosh & a tradeinark of
Mcintosh Laboratories, Inc.,
ard is being used with express
permission of is owner,

Microsoft & a regisiered trade-
mark o Microsoft Corporation.

POSTSCRIFT & a trademark of
Adaobe Systems Incorporated.

ITC Garamond, TTC Avant
Garde Gothic, and TC Zapf
Iyingbats are registered

trademarks of Internaucnal
Typeface Corparatlion.

Printed in Singapore,

Preface

Session 1

Session 2

Contents

wii

Whal's a compuler language? vii

What's a program? viii

Do you have © program? wiii

Why would you want 1o leam [0 program? vili
Paticnce required ix

How 0 get stated ix

And now—begin! x

Getlting Started 1
The elementary swifl 2
Editing: program first aid 4

Summary and review 5

Arlthmetic and Varlables 7
Arithmetie 8
Precedence: the order of calcutations 10
Ise parentheses © change precedence 10
Variables 11
Naming variables 13
Break a fow ndes 14
Summary and review 15

Contents

Session 3 The Oulside World 17
INPUT 18
Prompis 19
More editing: adding lines 20
Cleaning up with HOME 20
ST 21
Siring vanables 2

Variables rules recap 23

Dcbugging 23
Summary and review 25

Session 4 Using the Disk and Other Devices 27
Compuier menory 28
Files and catalogs 29
How 1o save programs 29
Reading the catalog and retrieving a program 31
Cleaning vp 32
For printer owners: printing your listngs 33
Using what youve Iearned 34
Suwmnary and review 34

Session 5 Lloops and Conditlons 35
Loops 36
GOTO 30
Conditional branching with IF, 'THEN 37
Duilding on the wnodel 38
Relational operaters 38
Usc REM for reinarks 41
Practice ime 41

Summary and review 42

Contents

Session &

Session 7

Session 8

Graphics 43

Text and graphics 44

A 40-by-40 canvas 45

Secing your listing again 46

Ploting colars with COLOR= 47

Using variables for ploting and coloring 47

Incrementing columns and rows 48

Drawing horizontal and vertical Ines 48
A universal line-drawer €

Random graphics 50

Siinmary and review 32

Controlled Loops 53

FOBANEXT 34

Using STEP with FOR\ NEXT 56
Delay loops 57

A quick review 59

Experiment before you continue 60
Swninary and review &0

Programming With Siyle: Modular Progromming 4l

GOSUBABE'TURN 62

END protects subroutines 63

Subroutines and organization &

Multiple instructions on one line 65

Organizing your programs: oOne Slep al a ume)

The great checkbook balancing prograin challenge 67
One version of a checkbook balancing program 67

Summary and review 68

Contents

Session ¢ Formatting Screens &
Horizonial and verical tabs 70
Prompt placement 73
Gelling noticed: INVERSE and NORMAL 74
A text-centering algorithm 75
Onc sclution 0 the centering problem 75
Summary and review %

Session 10 Programming for Peopla 77
A sordid history 78
People-pregram guidelines 7
Humanzing programs sn’t casy 8l
Il gets easier 81
Where do you go from here? 81
Do ol 82
A parting word 83

Appendix A A Summary o Applesoft Instructions 85
Appendix B Reserved Words 99
Glossary 101

Index 107

vi Contents

— |
—

Preface

This tutorizl will help you get started writing simple Applesoft BASIC computer
programs on your Apple® I computer, You won't learn all there is o know about
Applesolt BASIC from just this tutorial; bu by the time you finish Lhese ten sessions,
you'll be able 1o decide whether you want 1o conlinue learning about programming,

The product training disk that came with your computer gves you a briel introduction
o Applesoft; you might want 1 work with that disk before you read this mutorial,

What's a computer language?

A computer language & like the languages that people speak. I has a vocabulary and
1 syntax—word order 5 Impertant and spelling counts. Your Apple computer speaks
a lanpuage called Applesoft BASIC. (% speaks other fanguages, oo, but they aren't
built into the comnputer, you buy them on disks,) The computer reads the BASIC
instructions you type from the keyboard, and then i does exactly what ii’s told.
Luckily, it's casier v learn BASIC than a human language because BASIC has [ar fewer
words, and its grammar is usually very straightforward.

4 BASKC By any other name ... Thore arc many variations on te BASIC computer
language, DBut in this litle turorial the terms BASIEC, Applesofi BASIC, and
Appiesoft all refer o the same thing

Whats a computer languoge?

What's a program?
Compuler programming i wrting instrucuons for your computer. The entire st of
instructions you glve 10 a computer © make it d> something Is the program. Imagine
that your computer is a pd you want © rain. You cant lak [© your pet in the same
way you tak with 2 hwnian, you have 1o use a limited vocabulary 1o tell € exactly what
© do. I you wanled 1 © do a seres of things, you would give & a sct of instructions,
one inslruction aI a time, For instance, suppose you want your pet © s, lie down,
and rofl over, Youd do i like this:

"King, Sit.*

(King sits)

"King, lie dowmn

{King lics down)

"King, rel over.”

{King rols over)

*Good dog!®

{King wags 1ail}

Of course your Apple wont si, lie down, o roll over, b & will do a lot of things for
you f you give K instructions i a systematic and logical oeder, You use the same kind
of direciness, simplicity, and order in computer programming as n pe training
(exocpt that you don't have © praise your computer when & does what you tell).

Do yoG have fo perogfam?

You don't have © wric programs o use your computer, Thousands of programs
have already been written fior your Apple—programs for word processing, (inancial
analysis, computerized flle cabinets, and dozens of other applications. You just put
a disk with programs on & inio your disk dave and tum on your computer,

Why :avbl]d_you want 1o learn to program?

First of all, you night find prograniming © be a X of fun, When you learn ©
program, you discover that your Apple isnt really magical (although & ccriainly
seoms thal way a tmes); w's just follewing the instructions thal you gve it When you
program your compuler, you make & do what yore wart it to do—you get o creale your
mn magic. Second, you leam a kot about how 2 computer woiks as you learn to

wvill Pefoce

program & Tha gives you a better understanding of what your computer can and
can't do. Finally, you might find that programming is something that rcally inlngues
you and stimulzies your own creativity n ways you'd never thought about. You might
eventually decide o become a professional programmer.

You €an creale simple entertainment, educational, and business programs with just
an elementary sel of instructions. For example, you can wnite very effective
educational games in Applesoft BASIC, or even home budgeting and checkbook
programs © keep your finances in order,

Writing youf own program is an opion available on your Apple. Whie you're likely
o find programming useful and interesting, you dont have 10 learn how © program
o use your computer, But ¥ you do want © program, you'll find Applesoft BASIC a
great place 10 Start.

Patience required

Learning W program is a lide like Jeaming how o become a chef You've got v be an
experienced chef © pull off great seven-course meals, bt the essentials of the crait
begin with melting buitter, turning an egg, and so on. And the payoll ts similar, too.
You dont have to be 2 master chef 0 enjoy a homemade omelene (or amaze your
friends with your culinary prowess),

From time ko time, you'll just have to be patient—but only for a litde while, MHave
faith,

How to get started

Applesoft & buil ino your Apple 1 computer. But you need o prepare your
computer o store the programs you create so thal you can use them again. (You'll
lcarn more aboul storing your programs onig disk in Session 4) Here are the sieps o
take to begin your study of Applesofi BASIC:

1. Read yowr Apple compuler owner's guide first. % contains Iois of valuable
information about the <omputer that you'll need © know before you can begin ®
wse Applesofl. Pay special atiention 10 the scction on formaiting disks. You'll
need at least one fiornatted disk before wou can start

2, Insert the utilities disk that came with your computer inio the disk drive, close the
disk drive door, and um on the compuier, (See your owner's manual for
instructions) Cheose the Applesoft BASIC option and press Return; you should
sec this symbol: 1

3. Remove the disk from the drive and replace & with a formatted disk. Be sure ©
dose the drive door,

How 1o get started

+ Using Applesofl without a disk dive: T you don't have a disk drive, you can still
wrile programs; bt you won't be able © sore them To start BASIC withour a dsk
drive, mrn on your cOmpuler and then press the Control and Reset keys at the
same time, then release them. You'll see this symbol: |

And now—begin!
This mroral is divided into ten sessions; youll need abour an hour fir each session.

Be sure o spend lots of time practicing whal you've learned in each session before
going on © the next one; each session builds on the previcus one

Above all, have a good time. Experiment as ukxh as you can. Break the rules. Try
crazy things—the worst thing that ¢an happen 5 tha the computer will beep a1 you.
(When this happens, beep back)

Now, all you have © do is um the page and begin,

K PrefGce

Session 1

Getting Started

The bes way 1o find o ¥ you like programming is o do some. To keep
things simple, do everything exactly as its presented in this witorial. Of
course f you get bored, sirike out on your own! You won't break the
computer by typing somnething wrong, and the impornant thing is ©
experiment, learn, and have fun,

In this first session, youll learn the rudiments, Youll read about program
lines and line numbers, and how 1o type n programs. Youll see how (o
put messages on the screen with the PRINT instruction, and youll learn
some things aboul programming mistakes and how to fic them.

The elementary stuff

Before you do anything else, lype the word ywew and press the Return key.
NEW lells your Apple computer (o make way for 2 new program. Pressing
Return tells your Apple o look a what you just typed. Untit you press
Return, your Apple thinks you're just talking 0 yourself:

KEA Preds Ratum howm
Now type the following hne exactly as you see &, and then press Return:
10 PRINT “SIT" Prass Retum hen

The number 10 1s called 2 line mumber. Your Apple executes the lines of
instructions you type in numerie order, always beginning wih the lowest
number. For the tine being, nunber your prograin lines by 10's. You!'ll
lcarn why later in Session 3.

After you've typed all the instructions (which you've just done—your first
program © a short onc), type rov and press Retum. The RUN command
tells your Apple that you've finished giving & instructions and that you want
it 10 carry them out:

RUN Frem Refurn hew
Your vidco display should look somcthing like this:

15w

110 PRINT “SIT*

| RUN

| 51T

n

2 Geting Started

Youve just written and executed (ancther word for ru) your first computer
program, Congratulations! Youwve also just learned one of the most often
used programming instructions: PRINT. The PRINT instruction tells your
computer o display whatever appears within quotation marks. Here's
some more practice using PRINT. Type the following program exactly as
appears. (If you make a mistake, just press Return and retype the line) Be
sure 1©0 press Return @ the end of each line:

10 prirt "ile down”
20 Print "Roll) Owver™
30 pEixt "GeT wEiRd™
N

Youwll see this on your screen:

lie dawn
Roll Ower
GeT wEIRd

+ Why you dorrd reed NEW here: When yol re-use a line number, the new line
replaces the old one. The last program you typed had only one line—line 10.
This new program &lso has a line 10, replacing the old one. s as if you'd typed
NEW anyway.

Your coMputer doesn't care whether the letters arc uppercase or
lowercase, or some combination of bolh. But youve got 1© be careful how
you lype your instructions. Your computer expects o be told exactly what
o do ina way thal # can understand o you'll get an error message like this
one:

2EYNTAX [ERRCE IN 10

Computers always do exdciywhat you say, nol necessarily whal you e
10 say. Even minor 1yping errgrs will bring up 2 syntax error message
(usually with a line number to help you find the error). Type

HEW

and press Return; then type this one-line program and Uy running it:

10 PRIMT "WHOOPS" Watch autl!

{Be sure o press Rewrn a the end o the line—this & your st reminder.)
After you run the program, you'll sec this message:

*SYNTAX ERAROR IN 10 1Clsthelinarumbar,

The slementany shuft

Even though you and any other human who saw § would know that you
meant PRINT instead of PRIMT, the instruction baffled youwr Apple. Luckily,
most mistakes make your computer show a built-in error message that will
el you what you did wrong. As you program more (and, naturally, make
more mistakes along the way), you'll see more messages o help you
undersiand how your computer operates. Remember: the compuier
displays error messages to help you correct mistakes, not © zell you you're
a dummy. Treat these messages as helpful guides and not = nagging
annoyances,

Editing: program first qid

You've just seen that you have © be careful when you enter a computer
program o avoid introducing a bug, or €rror. Many bugs arc the result of
simple yping errors; you can avoid a lot of debugging later by checking
your lyping as you go along.

Retyping a Whole line €very time you make a simple typing error gets
tircsome very quickly. Your Apple has some buili-in features to make
debugging easier,

Type the following line, but don't press Return yei:
ig PRINT ® "LOOK QUT, Y00 BUGrp — Don'torassRetumnyaf!

That K between the PRINT instruction and the message & going © cause
problems. You could re-type the whole line, bu f you had o do that

cvery fime you made an error, you'd never get anything done. Instead,
locate the four arrow keys in the lower-right corner of your keyboard,

Then do this:

1. Press the Lefr-Arrow key untl the cursor is direclly over the offending
K

Press the Space bar once © crase the K (don't use the Delete key; i

won't work with Applesof1).

3. Using the Right-Arrow key, move the cursor until i is 1o the right of the
st quotation mark in the line. (If you press Retrn n the middie of the
line, you'l lose cverything from that point 10 the line's end)

4. Now check and make sure your Ene s cofrect

(&)

Your line should ook like this:
10 PRINT "LOOX OUT, YOU BUGHp
Now you can press Return and run the program; it work fine.

4 Getting Starled

&+ The origins of bug Back in the old days, computers vsed vacuum tubes, had a
million miles of wires, and required large, air-conditioned rooms W keep them
working. Computer folklore has & that one day a moth got into the computer
room and flew into the computer. The moth was fried © a crisp, but & didn't die
alone—its demise brought the computer 1o a dead siop. Alfter searching high and
bw ® find what caused the computer © “crash” a programmer found the moth's
remains and announced (with no regard for genus o phylum), "Hey. There's a
bug in e computer.” The rest is hislory.

Summary and review

In this first session, you learned how 1o make way for new programs with
NEW, how o execute programs with RUN, and how to put messages on the
screen with PRINT. You saw how programs use line numbers 0 arrange
the sequence o instructions. Finally, you learmed a few things about bugs
and how 10 get rid of them,

Before you go on o the next session, experiment with the PRINT
instruction, Write a five-line program; then change the line numbers by
retyping the lines (making the last line the first one, for examplc) to see
whay happens. And don't be afraid 1o make mistakes—nobody's keeping
score!

Surmnmary and review

Session 2

Arithmetic and Variables

You don't have © know 2 lot about arithmetic 1o learn o program your
Apple computer. But most programs require arithmetic functions to make
them work. (For example, in a checkbook balancing program you might
want to subtract the amount of each check that you write from the account
balance.) In this session, you'll learn the basics of computer arithmetic.
You'll also read about variables, the siorage areas n the computer's
memory that hold values. Finally, you'll learn the rules for giving names to
variables to make them easier o handle—and then you'll be encouraged to
break the rules 1w see what happens.

Arithmetic
You learned in the first session that your Apple displays anything enclosed

in quotation marks afer the PRINT instruction. To do arithmetic, use the
PRINT instruction withot quotation marks,

For example, type this program and run it

HEIN
13 PRINT &l & 5
20 PRINT 5 + §

RUR
54 % Line 10 pfinted exachly what wos inside the Quotation marks,

1a Line 20 prinfad the sum of fhe two numicen .,

In the first line, you told your Apple 0 print the phrase 5 + 5. But in the
sccond line, you said, “Add the numbers 5 plus 5, and show the answer on
the screen.*

As you might expect, your Apple can do more than just add, In fact, & can
do some extremely complex math. But in this tutorial, you'll suck to the
basics: addition, subtraction, multiplication, and division, Here's a chart
thal shows the symbols (called operators) your computer ises to do simple
arithmetic:

B Arthmetic and variables

Operator Achon

+ add

- subtract
y multiply
£ divide

The addition and subtraction operators are the $ame ones you've always
used. You've probably scen the division operator before, used o express
a fraction (as in 7/8). The only one that looks a little different & the
multiplication operator; it's an asterisk (%) instead of an X Many
programmer$ use the letter Xto represent some unknown value, so
somebody decided o use the asterisk (which is like an X with a horizontal
line through S center} instead.

llere's a sample program. Type il but befere you run it, predict what the
answers will be

Hera's simpla aadton,
10 PRIRT 4 + 51— ——————Your computet hondies decimals easly,

20 BRINT 7.56 - Aetpmm———"""
X PRINT 4 = 5
40 PRINT 4.6 / 2 Heata'smpledvision,
% PRINT 11 + 12 - 13 + Mm—e— o
60 FRINT 12 / 3 + d——0u
% PRINT 10 * 2 + B/ 2—r

Remempat: "magnsmulil ply.

—lt¢ando multiple cpet ations,
‘—'_'_‘—'—\—_
— Tha complned solves problems fom ket 1o right .,

\—'—h-—.—

.. bt hele e other consderations (read dhout
precedence In the naxt saction),

Line 20 shows you that your compuier can handle fractions—you just need
0 express them n a way your computer can understand., For example, if
you mean to tell your compuier o determine the sum of wo and one-half
plus three by typing this:

PRIKT 2 1/2 4+ 3

you'll get an answer you hadn't counted on. Your computer will display
13.5 instead of 55. It interprets 2 1/2 + 3 a6 “divide the number 21 by 2
take that answer and add 3 i it Spaces between numbers mcan nothing
0 your electronic friend,

If you worked out all of the problems in your head bdfere you ran the
program, the last answer may have been a Surprise:

MW PRINT 10 * 2 + 8 / 2= Theanswas24 not14!

The result of the calculations is based on precedence Precedence is the
order in which your computer does mathematical operations,

Precedence: the order of calculations

In general, your Apple does calculations from left to right. But al
multiplication and division happens before addition and subtraction. Siep
through the calculations in Ene 7 to see how precedence works.

Calculation; TSR 58 L2

Step I 10+2=20
Sep 2 B/2 =4
Step & 20+4 =24

Use parentheses to change precedence

Somctimes you'll need 1o re-order precedence so thal you can first do
addition and subtraction and then do multiplication and division, For
example, what i you meant

PRINT 18 % 4 / 2

10 mean you wanted 1o add 18 and 4 first, and then divide the sum by 2
Look a the following Itile program to see how to do it:

WEW
10 PRINT 1B + 4 f 2 Thiscomesout 20...
23 PRINT (1B + &) / 2 Lbutthiscomesout 11,

Line 10 first handles the division, then adds the result o 18, Line 20 m
orders precedence by enclesing the sum within parentheses. Parentheses
change the order of precedence. Whatever you lype within parentheses is
solved first, again from left 1© nght and muliiplicalion/division before
addition/subtraction,

¥ you need to, you can embed parentheses within other parentheses o
show precedence in more complex situations. Just reMember to go from
the innermost sel of parentheses and mave oulward,

Tzke a ook a this next program and sec § you can guess what the resulis
will be before you run it:

10 Arfhmefic and Marlables

10 FRINT (7-3) = 2

20 PRINT 3 ° (10 - g / 2

0 PRINT (¢4 - 3 ¢/ 13 + 211 * 2

40 PRIRT «((1 - 27y * (2-1Iy + 11y ¢ 18

New run the program and see F you were right.

Whenever you starl using a lot of parentheses, check 1o make sure that the
number of left parentheses matches the number of right parentheses. I
the totals of ieft and right parentheses arc different, youll get a syntax error
message.

% Pretend you're the computer: Every Ume you write @ program o a section of a
program, run i in your head before you mun i in your computer. The mere you
“play compuler,” the more you'll understand how your computer operaics. As
that happens, you'll automatically type instructions the way the compuler needs
© see them, you'll soon find that you get far lewer error messages. Try it for 2
while and see what happens.

Experiment with your own asithmetic programs. Try mixing the
precedence up. Mix in some phrases to label what you're doing. For
example:

¥EW
10 PRINT "The sum of 12 plus 20, divided by the difference beatween 5 and 3.5, is ™
20 PRINT {12 + 201 / {5 - 3.5

¢ Abowt unsighty *runoper* lines: If your compuler is sa © display 40 columns on
your screen, line 10's quotation ran over the edge of the screen and wrapped ©
the nex line. The word distded was split in the process. As you g0 along youll
pick up linle wricks w avoid such unsightly split words; for the time being, Uy 0
ignore them—yclr computer does,

So now you know how © use your Appie to do arithmetic. And you can
wse t as you would a calculator (although using a calculator is probably
quicker and casier), But the simple arithmetic functions you just learned
become much more powerful when you use them with variables.

Variables

variables arc symbols for values. They're called varigbies because their
values can change or vary. Variables look like phrases you forgot o put in
quotation marks:

variobles

1

NEW
10 PRINY *EELLO#
20 PRINT HELLC

KJN ']
HELLO Une 10 prints this

2] Une 0" swork.
In this program, the first HELLO s a phrase for the computer o print just

as L is, The second HELLO is a variable whose value happens 10 be zero.
You give a vaiue to a variable by using the equat sign{=).

Add these lines to the HELLC program and run it
¥ HELLO = 120

43 PRINT HELLO Thisgwll show up o8 128

RUN

HELLO

128 New value for varable HELLO osgned in kne 30

You've just assigned the value 128 © a variabic calied HELLO. Think ofa
variable a5 a temporary storage box. ‘Whatever you put into the box stays

there until you replace 1 with something clse. Add these two lines 1o your
program and rnun € again:

50 HELLO = 3500
€0 PRINT HELLO
REMN

You can do math with variables. Try the [ollowing program:

NN
0 A= 15
20 B = 3

ID PRINTA+ B

Variables can hoid the result of calculations on other variabics as well as on
numbers. Type the [oliowing program and see ff you can guess the results
before you run it:

10O W=5

20 HIGE = 9

30 SUM= LOW+ HIGH
40 PRINT SUM

The sum o variables LOW and HIGH ends up in the third variabie, SUM.

Try cwt the {oliowing program to se¢ the various combinations of numbers
and variables you can get.

12 Arthmetlc and Vaoricbles

10 = 14,5
20X=p.5

30 PRINT 8 + X3 * 2
40Ym W - X +13

50 PRINT ¥
GHDEZ L a B * Y — 3

10 PRINT 2

Naming variables

Applesoft imposes a few restrictions oo naming variables. Here's a list:
s A variable name must begin with a letter,

n Characters after the first one can be a mixture of letters and digits (no
symbols).

& Certain letter combinations (called reserved words) have special meaning
© Applesoft and can't be used in any part of a variable name. (You'll
learmn more about this rule n Session 3.)

w A name c¢an be up © 238 characters long, but the computer recognizes
only the first two. (The others are 1© remind you what the variable
stands for)

When you write a very shont and simple program, using single letter
variables is a safe way to make sure a variable name deeso't conflict wih
another variable, (Your computer sees SUM and SUNDAY as the same
variable because of the last rule io the chan) But when you begin wriling
longer programs, i really helps w0 have variable names that describe what's
going on.

For example, if youre caiculating the area of a circle, you'll need the value
of pi (@) io your program. You could have the variable X hold the valie o
pi {3.141592). E makes more sense, though, o0 give variables more
meaningful cames:

NI

10 FI = 3.141592

20 RADIUS = 5

3 AREA = PI " RADIUS * RADIUS.—— . Mafh: AzgR?2

4 PRINT AREA

Descriptive variable names make & easy for you o see what the program is
doing when you read your code (@ synonym for program).

Voarlobles

13

+ Slore only numbers i moneric varables: The kinds of variables you're leaming
about now are called niumeric varjables. That means that you can use them only
o hold the value o numbers. In Session 3, youll learn about string variables,
which hold anything—numbers, letters, special characters. T you get an error
message like TYPE MISMATCH, you've probably tried 1o give 2 non-numeric
value 1 a numenic variable,

Break a few rules

One o the best ways © understand a programming rule & to break it.
Break every variable rule there & and see what happens. Go
ahead—question authority. Here are some examples:

MEW

10 PRINT 1V
RN

1o

Your compuler thought you wanted & 10 print a 7 and then (he value of the
variable V, (All variable names start with a letter) Variables that vou
haven't assigned a value to automatically hold the value 0, 27 with a 0 next 1o
ik 12

10 PRINT = 1

RUN

PSYNTAX ERROR 1IN 14

pRINT i & reserved word; you can't use & as a variable.

ICHIMI=5
701 MIAMI = R
30 PRINT MIMI
RUN

a

Gnly the first two characters of a variable name really count. As far as your
Apple & concerned, you assigned the value 5 o in line 10; but you
changed i 1© 8 in line 20,

Finding variable names that arc bolh meaningful and legal ean be a bit
tricky al first. So when you run into a program bug, the first thing you
should do i check your variable names,

14 Arthmetic and Varlablas

Summary and review
This session taught you how © use computer arithmetic and variables. You
learned the rules of precedence and how o program your computer o
cafculate simple and then somewhat complicated arithmetic problems.

You found out that variables are storage areas used 1o hold values and that
the names you give variables should reflect the kinds of values they hold.
And you saw that, like everything else in programming, there are rules for

naming variables (and that breaking those rules is a great way 1o learn
them).

summory and review

Session 3

The Outside World

Up © now, all the information that went into the computer got there
through your program lines. When you wanted 2z vafiable o hold some
value, you used an assipnment instruction (as i NMBER = 23, so called
because @ assignsihe value 22 o the variable wumser). You, the programmer
gave the program the variable'’s value. In this session, you'll leam how 1o
use INPUT, an instruction that lets the program got a variable's value from
the person using your program. You'll read how o construct meaningful
prompling messages so your uscr will know what information the program
nceds. And you'll learn about string warialies, which let you assign letters
and special characters (nol jusl numbers) o variables.

Youll also learn the difference between immediateexecutionand deferred
cxecution, and you'll encounter new instructions that ket you clear the
screen (HOAME) and get an updated listing of your program (LIST).

INPUT

The INPUT instruetion $ a the hean of interactive programming—
programming that lets the computer and a hyman hold a conversation.
INPL'T lets you give information o your program while it's running. It
makes the program wait until you (or the pefson using your program)
types somcthing and presses Return.

U'ype and run the following program: when a question mark (the INPUT
prompt) appears on the screen, lype a number and press Return:

NE®

1o INPUT A

20 PRINT A" 5

Your Apple computer prints whaicver number you yped afier the
question mark. If you typed 3, your screen would look like this:

23 Your computer suppies Te question mak outomaticaly
15

[U's just as f you had typed A = 3 as a program line. ‘Whalever you type in
response Io an INPUT prompt gets assigned 1 the input variable @ varable
whose value is assigned by the user, as opposed 10 one whose value is
assigned by the programmer).

18 The Qutside World

Prorﬁpts

The question mark prompts you lo lype something. You knew whal o
ype (@ number) because this tutorial told you. But people using your
program would have a hard time knowing what © do ¥ all they had o go
on was what appeared on the screen; a question mark i itself doesn't say
much.

Applesof: lets you use descriptive prompts lo solve this problem.

Prompts tell a computer user whal © do next. You can use either of two
ways 0 show whal the program wants. Firsl, you can print 2 line tha says
what o do; then use an INPUT line.

Type this program and run it

REW
10 PRINT "I had a tough night. What year iz this?"
20 INPUT Year

Now when you run the program, the message on the screen lets you know
thal you neced lo lype the year.

You can also use the INPUT instruction itself to print a prompt. A prompl
with INPUT works almost like a prompt with PRINT, except that the
prompt appears on the same line as the INPUT instruction:

HEW INPUT and promipt
10 INPUT "I had a tough night., What year 1s this? ™ Yli!ar/
20 PRINT *Oh, great. I thought it was "; Year + 1 . ___Noewsiulfherel

30 PRINT "and I misased Christmas.”

{Bc sure 10 give the computer an answer when it prompts you for one.)
The semicolon between the quotation mark and the variable name n line 10
is important; you have 10 include a semicolon when you're using a
prompting phrase with an INPUT instruction. Note that when you use a
semicolon after an INPUT instruction, your Apple omils the guestion mark
prompt.

¢ Some #ps on using PRINT. Line 20 has implicalions you can nvesligale on your
own. 1o gel you slarted, note that

1. There's a semicolon afier the final quotation mark—ihe semicolon tells BASIC
© show the value of the variable on the same line as the quotation.

2. Your Apple does a linle arithmetc on the variable Year.

lHerc's a program that shows several exampics of self-prompting INPUT
lines:

Prornpts

nEW

12 ERINT HTRIVIA PROME'T (GAME"

20 PRIMT

3 INPUT "How rrary cards are in adeck? 7; Cards

4 INp0)T "How many U.S. congreaspersons are there? = Cp
50 [NE'UT *How many keys are there ol your keyboard? »; Keys
6 INE'UT “How mwany days are ln a loap year? ™ Leap

.
=

Hlegal names and synmax errors: The lnvia program uses descriplive variable
names in all lines except line 4). The vanable name CP 5 rol very descriptive,
but both Congress amd Persons contain the reserved word ON. (See the list in
Appendix 13) When you get a syntax error in your program an<d you dont know
why, lry changing the variable names,

More editing: adding lines

Someumes you have 10 add lines 1© your program. If the new lincs beleng
a the end of the program, you just lype 4 hne number larger than the last

line number in the old program and stant typing. Dul what happens ¥ you
need © add a hne n the middie? Nothing 1© . All you have 10 do 5 type
a line number hal's befrween the numbers that already exist.

For example, suppost¢ you have the following program, and you warnt 10
include a kne between lines 10 and 20:

NEW
13 PIINT "Remember Lo
20 PRIMT *che dwg"

You wanl © remember © feed the dog. All you do is add the following
line © your program:

15 PRINT ~faad-

Go zhead and run the program. Youll see that evenything turned out in the
nght order,

.

& leare intervals between line nwmbers: All he sample programs you've seen in
this [Utorial have line numbers spaced 10 apart, I Lhe current program had been
numbered 1, 2 instead of 10, 20, you wouldnt have had rcom © insent the rew
line, and you would have had © raype the whole program.

Cleaning up with HOME

Your screen gets cluttered afier you've typed and nun a few programs. The
HOME instruction elcars the screen and places the cursor a the upper-left

20 The Qutslde World

corner (the cursor's beginning, or Aome, position). Each time the
program encounters HOMI, 1 clears the screen and homes the cursor:

)
“3in
a

NG
20 INPUT "HOW MANr POUNDS ARE IN A KILOGRAM* ®; 1B
X HOME
4 INPUT "HOW OLD IS THE PRESIDENT? “; PRES
RUN

The screen cleared with each new question. That way there’s no <conlusion
about what (he program expects, and there’s no clutter from other
programs.

You can dlso use HOME wilhout a line number whenever yott feel like doing
some light houseclcaning. Just type sovE and press Return.

Try & now:
HOME

HOME clears the screen—il doesn't clear memory,. HOME just erases the

junle cluttering your display. I has absolulely no impact on memory.
{Dont confuse @ with NEW.) But after you use HOME to dear your screen,
you'll need a way 10 see your program lines again,

LIST
Type List and press relurn B0 seC your program zgain, Ty & now.
LIST

AS your programs get longer, you'll use LIST more and more. Type the
[ollowing program to test the different ways 1o use LIST:

KEA

10 HOME

20 BRINT "And Mavd Pritchard”

3 PRINT "waddled the bilble-black path”

4) PRINT "to the boat-bobbing near

50 PRINT “with nary a mind"

& PRINT "for Mr. Pritchard, dead 2% biscuits.”

First, nm the program; then list it. Once you've listed your program, try
the following variations of the LIST command t© sec what happens.

LI s 20 I-tsts Ine 4D only.

L1sT 40 -

LIS™ - &0 Listsfromihned0ioandolprogrom.
LIST

- A W3 tsfrombeginningtoline 40,
T —tets from Ine 20 % N 40.

LIST

21

With the small programs you've written so far, you won't need all these
variations i the LIST command., DBut iater, when your programs are so
large they roll off the top of your screen, youtl want o list small program
scgments,

String variables
In Session 2, you tearned how © use variables with numbers, You can alse
usc variables with text. Variables that hod text are called string variabtes.

String variabte names always end with a dotlar sign (8), and you define them
(thar is, give them values) in nearly the same way as numeric variables:

WEM

10 HOME

20 AuntS= “Aunt Lizzyw
Jo PRINT Aynt$

Vehen you run this program, the words Aunt Lizzy appear on the screen,
Line 30 works the same as

PRINT "Aynt Lizzy“
You can put just about anything into a string variable. Unlike numeric

variables, which aceept onty numbers, string variabtes can hold lerefs,
numbers, symbois—even punectuation:

HEW

10 HOME

20 GARBALES= "Allaf this Junk-> %435 9.
X1 PRIMIT GARBAGES

Your computer printed everything between the quotation marks in line 20.
I's important 0 remember that numbers are not ifeated as numbers when
they arc in string variables. ‘They're treated a5 text—ijust symbols, a siring
(gt W) or characters without meaning © the compuler,

Run this next program 10 scc numbers treated al text

10 HOME

20 AL = mipgw

30 Bs = wpe

40 ERINT AS o+ BS

Instead of getting 30, you got 1020 The plus sign(+) doesn't “add® the
string variables, (low do you add letters?) It just sirings them together.
In computer terms, il concaterLdes them,

= The Outside Waorld

You can also use siring variables with INPUT. You use prompls with a
string variable INPUT just as you do with a numeric variable INPUT. This
next program mixes both kinds of variables:

10 HOVE

26 INPUT "wrnat's your name? *; MNAMES

3 XPIT "Type your age: ®; NiM

;; g‘;.:;:‘r NACAES: deadei d e

& PRINT"™ is ™ There saspacebefwethel andafferthes
73 PRINT NOM:

8

PRINT "years cld.”

Just 10 scc what happens, type some letters when your Apple asks for
numbers. (For example, type eighteen instead < the number 18.)

As soon as you press Return, you get this error message:
THERTER

That just means your program cxpected a number and gol something else.
Do & & says—re-enter a number (your computer wouldn't Jie to you), and
everything will work fine,

Variobles rules recop

In case you've forgonten, here are the rules for naming variables, The last
one applics only © string variables:

A variable name must begin with a leter.
Characters after the first one can be letiers o digits.

m A name can be up o 238 characters Jong, but the computer recognizes
only the first two. (1he olhers arc © remind you what the variable
stands for)

Certain letter eombinations (called reserved words) can't be used in any
part of a variable name. See Appendix B for 3 list,

All string variable names end with §.

Debugging
Murphy's law, *If anything can go wrong, & will" applies doubly 1o
programming. (Lubarsky's Law of Cybernetic Entomology applies equally:
"There's always one more bug™; but that's for 2 more advanced 1utorial)

Debugging

Experienced hackers (another term for programmers) and beginners alike
make all kinds of little errars while programming, Debugging a program
(lhat is, ruthlessly tracking down and exterminating bugs} & 2 normal parnt
of creating a computer program; more ofien than not, it's a major part.
That's why your computer has effor messages.

Knowing the difference between Imumediateanddef crredexecutionis
helpful in debugging programs. When you type ron of new of List without
a line number, the computer docs what you want as soon a5 you press
Rewarn, This is known as immediate execution, When you write a program
with line numbers, the computer defers execution until you run it This &
called deferred exccution. mmmediate excCution ¥ extremely useful in
debugging programs.

For cxample, type and run the following program:

NER
10 HoME

20 MONEY$ = *51,000"
30 PRINT MONEYS

You gt zsyNTAx ERROR v 20 instead of the $1,000 you expected. List line
20, and you will be n for a surprise:

20 M ON EYS = "$1,000"
What happened © » ov ers? It's all broken up. Type:
MONEYS = "31,0000

As soon as you press Return, you gol a syntax error, You have a reserved
word (ON) embedded n your variable name. In your program listing, you
can sce thal ON has been separated from » ot £vs in lines 20 and 30, You
can rewrite your program with another variable name, but first est the
alternate name by using immediate exccution. Try the following:

BUCKS "51, Q00-

There was no error message this time. That means Bucks is acceptable as a
variable name. In this case, changing the program takes only a few
seconds; you've used moweys only once. But consider a situation n which
you've typed a much longer program, using moneys 25 or 30 times—it would
take quile a bit of time o change cach instance ofwoxeys to pucks. It's a lot
quicker lesting oul possiblc errors by using immediate execution than re-
wriling your program Cvery time you enNcounter an error.

The trick 1o successful debugging is isolating the problem. Some crror
messages give you the lme number where youl computer detects the
problem. This helps you zero in on the problem, Test the possible
problem from the immediate mode as you saw n the cxample with moxzys
and rucks . Corfect the error in the program, and rerun i to sec ¥ more

24 The QOutside World

errors occur. If no more errors happen, then your debugging
succeeded—at least as far as variable names are concemed.

yYoull find more uses for immediate execution as you go along,
Experimentation i the key., Try everything first with immediate execution,
you'll be in for some pleasant surprises.

Summary and review

In this session, you learned that you can get information from the user with
the INPUT instruction while your programs are running. Be sure 1© use
descriptive prompts with INPUT; that way people who use your programs
can know what they're supposed to type. Descriptive prompls are © the
vsers of your programs what descriptive variable names are w you, the
programmer.

You also learned about string variables. You saw that they work and look
much like numeric variables, except Lhat string variables end with §, and
their valucs are surrounded by quotation marks in a program [ine.

The HOME instruction clears the screen for you., LIST kets you see all o
some of the lines of the program in memory © make program debugging
casier.

You also learned thal you can use many programming instructions with
immediate execution o help you debug programs.

Summary and review

Session 4

Using the Disk and Other
Devices

As you write longer and bener programs, youll want to start saving them
v use again. This session explains how © store programs onto disks and
how © get them back again.

You'll learn about three dilferent kinds of memory (RAM, ROM, disk), with
crmphasis on disk memory. Youll sée how © store a program one a disk
with SAVE, retricve the program with LOAD, and see a list of all the
programs on a disk with CAT. Youll learn how ©@ gea rid of outdated
programs on a disk by using DELETE.

You'll also leam how o use PR#1 & get a version of your program on
paper instcad of on the screen, and how © usePR#0 © use the sgreen
again. And youll end the session with a review of everything you've
leamed so far.

Computer memory

RAN stands ForReimndom-AccessMemory. RAM is temporary. When you
lirst turn on your computer, this memory has nothing sneaningful in i
¥When you wrile a program or [ell your computer lp retrieve a program
stored on a disk, that information goes into RAM When you wrn off your
computer, all of the information in RAM evaporales.

ROM s ReadOnlyMemory. IUs a kind o memory that holds information
permanenily. The Applesoft BASIC language i siored i this kind of
memory; when you twmn your computer off, the language stays in ROM (but
no! your program). Nothing that you type gets stared in this kind of
memaory.

A disk s what you save programs on. Disk drives (the devices Lhal disks go
into) work a lot like tape recorders. With a wape recorder, you 1alk inlo
the microphone, and your voice 8 recorded on magnetic tape, Then you
rewind the tape and listen © your voice. Your computer works the same
wiiy, except that instead of using tape recorders o save what's in RAM onlo
lape, L uses disk drives © save infermation onto disks, Onece you've gol a
program on disk, you ¢an *play it back” again and again.

You don't have to waorry about the technical details of RAM, ROM, and
disks. Bur youll save yourscll a ot of grief if you remember thal ‘when you
lrn off your computer, everything in RAM disappears into clectronic
eblivion.

B Using the Disk ond Cthar Devices

Files and catalogs

Moat well-organized people put written records in files so they can find the
records agam. So oo with computer records. Programs stored on disk are
also called files. There are several other kinds of files, but the only kind
you have o know about for now arc program files—the name given o
programs stored on disks.

Making a kst or catalog of what files are stored ina filke cabinet makes {
casfer © locate a file when you need it Essentially, that's what your
computer does when you save z program o 3 disk. You Store your
program by using the SAVE command, and the name of the prograin s
placed i a catalog. When you want 1o use a program, you lock 1 up in the
disk's catalog with the CAT command 1o make sure it's there; then you
retrieve 1 by using the LOALD commnand.

& Commands versus instructions—a matler o terminology: That last paragraph
used the term command several times, A command is Ike an instruction in thal
tells the computer w0 do something. The difference between a command and an
instruction lies almost entirely In when the computer does what you want
Essentially, a command is an order thal the compuier executes immediately: an
inslruction % an order whose exccution § deferred. NW's just a matler of
terminclogy.

How fo save programs

Storing a program onto a disk is the easiest thing in the world. You issue
the SAVE command, giving your program a name you can use later o get &
back from the disk.

To get scine practice, [irst lype in this prograin:

NEW

10 PRINT "This is my wvery firat saved program.”
20 PRIKT "I'm wery prougd of it»

X PRIMT "(or 1 will be, Iif I can get it back)."

Now you need © think of a name. Here arc the rules for naming a
progranmt.

® A program's name can be up w fifteen characters long.
m The name must begin with a leticr.

How to save programs

29

m You can usce letters, digits, and periods in the filename, but you can't use
any other characters, and you can't include any spaces. You can use
both uppercase and lowercase characters, but the computer converts all
letlers w uppercase.

m All filenames on a given disk must be unique. Bwt af characters in the
name count, not just the first two, and you don't have o worry about
reserved words., So coming up with differem filenames shouldn't be
much o a prcblem.

m The name should refllect what the program does.
Flerc are some legal filenames:

O NCK BOCK

ADDING . PROGRAM

AL IANDAU. 2

NOT 4.5ALE

These names, though, are éegal

Higgzat Nome Preblem

10NE Begins with 2 number,

THIS. PROGRAM! Exclamation mark is illcgal.
JPOINT Begins with a period.
AREALLY TRULY.NIETY PROGRAM Too, oo, long,

GREAT STU¥F There's a space.

(Many people use periods in filcnames where they'd use spaces £ they
could.)

Save your program omo a disk now. You can use whatever Icgal name you
wanl; MY.FIRST FILE scems like an appropriate one.

Type this line and press Retwrn:
SAVE MY,FIRST.FILE

The disk whiss and kerchunks a bit,. When i siops, a copy of your
program is safcly stored on the disk. Note that word—copy. Storing a
program on disk doesnt have any effect on whar's in the computer's
memory.

Type L1sT and press Return; youll soe that the program i sfill there

a0 ising the Disk and Other Devices

Réading the catalog and retrieving a program

Once yeu've saved your pregram to the disk, type NEW and press Return.
Now you know for sure that there's nothing n memory. (Type List and
press Return © sec for yourself)

To look a the files on your disk, usc the CAT command. Youll get a list of
all the files on the disk.

Type this command and press Returr:

CAT

Assuming there are ne other programs on the disk, your screen will look
like this:

i T
JCAT
JPRACTICE
NAME TYPE BLOCKS MODIFIED
MY. FIRST . FILE $08 ! <ND DATE»
BLOCKS FREE 240 BLOCKS USED: 40
]

A

{Of course, your screen will look different f the disk already has other
programs on it.) The program MYFIRSTFILE 5 now in the catalog. (For
information on what the rest of the display means, sec the manual Lhat
came with your compuler) The next step is o retrieve the program. To
do that you nced a new command, LOAD,

Type this command and press Return:

LoAD MY.FIRST.FILE

Readng the cotalag ond ratleving o program

You'll hear your disk drive whir a second, and then the prompt and cursor
will reappear. That means your program was successfully loaded into
memory.

Te make sire it's the program you saved, list it

LIST

Your program appears, just as I was whon you saved 1.

¥ 104D does a NEW: When you load a program, youl computer first clears s
mernory of any program that might already be there, This means you don't have
1o worry about two programs being mixcd together, (If's possible o combine two
programs, but the technique is 0o advanced for this tutorial) Think of LOAD as
having an automatic XEW anached o L.

Cleaning up

[you're really carcful when you write programs, you'll save different
versions as you go zlong. For cxample, you might have saved these
programs oo your disk:

STAMPS. V]
STAMPS. V2
STANPS. VS

[you know for sire that the last version of your program, STANMPSVE, is
the only one you plan 1o use, you might as well get rid of the other versions
and free up room on your disk. You delete files by using the DELE TE
command.

To delete STAMPS.V], Iype

DELETE STAMPS. W1 Prass Retum,

You'll hear the disk whir, and STA:UPSV] will be just a memory Chuinan,
nol computer). Just think of DELI’TE as the opposite of SAVE, and use the
samc¢ format.

v DELEUES not reversible: DELETE s forever, Once You delde 2 program from

the disk, it's gone, Be sure that you want o gat rid of a program before you use
DELETE.

K. Using he Disk and Other Devices

For printer owners: printing your listings

So far, you've senl your program o the screen and w the disk, You can
alse send your program {and anything clse you type) o the printer,

Printing oul a program, especially a long one, is extremely helpful in
program debugging; your cxperience will show you how very lrue this s,

To list a program on your prinier, follow these steps:

1. Make surc your printer s properly connecled o the computer.
2, Check that you have paper properly loaded,

3. Be sure the printer is rned on,

4, Type pri1 and press Return,

(Jf you don’l follow any one o the first three instructions, your computer
will appear o be stuck) The PR#1 command makes everything tliat would
go to the screen go to the printer, ¥ you type LIBT after you've typed a
PR#1 command, your printer will clank out the listing {unless you've typed
LT incorreclly—in which case the syntax error message gas printed),

To see the computer's output on your screen agiin and 10 stop using your
printer, type this:

PRIG

and press Rewrn, The command will appear on the printed page; but afier
that, subsequent commands and listings will appear on the screen insicad,

Bugs can be wuegh 0 find in longer programs, especially when your listing
is so long that ¥ scrolls off the screen, Printing ot your Estings ¢an save a
great deal of debugging time,

Type thls program and by listing i on your printer:

NEW

10 HOME:

20 PRINT wThi= orogram will be listed %o my printer.™
a0 PRINT "If therers a bug here, the printe-®

dF PRINT "wil) help me track iz down.™

PRE

LI=T

Your printer gives you a hard copy listing o the program,

Before you turn off your printer with PR#0, nunt the progran o S5ec what
happens. Then tpe PR#0 10 get your BASIC prompl () back on your
display screen.

For printer awners prinfing your lisirngs

33

Esihg what you've learned

You've had kess 1© learn in this session than in the three previcus ones.
Use your remaining BASIC siudy time lo write some programs that use all
the instructions and operators you've learned so far. Here's a list b jog
your memory:

Instructlons

HOME INPUT PRINT

Operolors

2 = .

/ ()

Cemmands

CAT DELETE NEW

LIST LOAD PR#1

PR#0 RUN SAVE

Concepts

Immediate and Deferred Execution Line Numbers with Intervals
Meaninglul Names Numeric Variables
Precedence Prompling Mcssages

Siring Variables

Summary and review
In this session, you learned how 1o slore programs onlo disks by using the
SAVE command, and how lo gel them back by using LOAD. You learned
how to name programs, and which characters are legal in 2 name and which
oncs arcn'l. You saw thal CAT gives you a list of all the files on your disk,

and that ¥ you use PR#1, whatever ordinarily poes o the screen goes o Lhe
printer. (PR=0 sends information o the screen againd

K" Using the Disk and Other Devices

il
i

||
HM
i

|

B
E
N
il o
WHI .
"JL.' n ‘

Loops and Conditions

In the first few sessions, you learned the rudiments of BASIC
programming. Now il's time to get down 10 some more advanced stulf.
In this session youre going © learn about three very powerful principles:
loops, relationals, and conditionals. You'll also read about some BASIC
short cuts that make programming easier, and you'll learn some other
helpful instructions.

Loops

To loop 8 1 go over the same part of a program more than once, Tor
example, suppose you want o gel ten names with INPUT and print them
onc after another onto the screen. It would be a lot easier © repeat the
part of the program with the INPUT instruction than © wrile len separate
lines with INPLT:

NER

1t HOME

20 INPUT "Gimme a name: %i; NAMES

3o PRINT HAMES

40 .. How do you get bock fo line 207

\Whai you need ® some instruction that lets your program loop back Io line
20 1o get another name. That instruclion & GOTO.

GOTO

The GOTO instruction directs the program © go © any line you name,
This program clears the screen, then skips o (or branches o) line 40
instead of going 1© line 30:

NEW

1t HCME

20 GaTR 4R

3 PRINT "Hey! I thought I was nexclv
4 FRINT "I'm the only line youtll see!s

Thisnevergeismintad)

Here's another example. Type lhe first program of this session, but this
time lype

10 GOTC 20

35 lecps and Conditions

for the last line. Then list the program. I should look like this:

18 HOME

20 IKPUT "Glmme a name; "; MNAMES
L PRINT KAMES

40 GOy 20

This program repeatedly asks for a name and then prints out what you
iype. The program will go on doing this forever as long as somebody
keeps typing in names (or until somcbody pulls the plug); every lime the
program reaches line 40, 1 goes back w© line 20.

& Inftrdte loops: What you've gor here is an infinite loop. Sometimes, infinite
loops can be helpfal—this isn't one o those times. To get ou o the bop before
you sun out of names (Or patience), press the keys marked Conuol and C a1 the
same time; release them and press Return. Thar's called pressing Control-C;
you'll nn across this term ofien § you read computer books and magazines.
When you press Control-C, your computer will announce:

BREAK IN 20

The message means thal you *“broke jmo” the program a line 20. When a

program gds stack (or hangs), sometimes the only way © regain control § with
Control-C.

This program solves the problem of getling lots of names without retyping
INPLT lines again and again. But it's out of comrol. You need a way (other
than Control-C) of getting the program © stop looping when youve had
enough,

Conditional branc_h'ing with IF...YHEN

BASIC has a two-part instruction called IF...THEN. I gives your program
the power o make decisions—which, as i wms ouwt, is just what you reed
 solve the infinite loop problem. The general format of [F... THEN locks
like this:

IF <something is irue> THEN <perform some action>

An IE. . THEN instruction decides whether o not something is true. [f what
you say I the first part between the words fFand TIHEN(called the
condition) i true, then your computer does whatever you put after THEN.
If the condition & no¢ true, then the program ignores everything after
THEN and drops 1o the next ling.

To see this n action, add two lines 1 your infinitely looping program:

25 IF NAMES = "enough™ THEN GOTO SO
52 PRINT #And that ends the name 1list.m™

Condiional branching: with IF.. THEN

Here's the whole listing:

10 ROME

20 INPUT "Gimme a name: “; MAMES
25 IF NAMES "enough" THEN GOIQ 50
30 PRINT MAKES

0 coTo 20

50 PRIKT "And that ends the name lisc. »

Run the program now; afler you've typed a few names, type enough and the
program cnds.

Building on the model

Going by the model IF <something 5 true> THEN <perform some action>,
in the previous example the something-that's-true (the condition) isA.45=
“enough.” When NAS was anything except “enough,” the program went on
looping; when i was enough, the program branched to the final line. The
branching was the perform-some-action part,

¢ Slart asaving plar: As you type in your programs, you should gd into the habil of
saving them 1 your disk before you run them. Then, save them olien as you
develop and change them—once every ten minutes or 50 will do nicely, Therell
be situations when even Control-C won't get you out of rouble (like, {or instance,
when your little brother playflally flicks off the power switch). If you save the
program ofien, you won't have © recreate and relype your latest refinements.

Relational operators

llere are some more examples of IF... THEN instructions. Pay careful
atlention 1o the conditions; you'll se¢ some symbols you haven't seen
before:

IF NAS = "QUIT THEN GOTO 100 B T p—
IF A5 <> “APBLE" THEN DRINT "YOU LOSEm=—"" el
IF SUM > 10 THEM X = 50 > meaans “greater than',

[F COUNT< 100 THEN GOTO 20=——
TT——e < Means "ess hary,

Those litle angle brackets are called relational operators. They describe a
relation that exists between two Llhings. [ere's a chart that shows all he
rclational operators and what they mean:

38 Loops ond Canditions

Opearatar Meaning

> greater than

< less than

- equal 1o

<> nol equal o

> nol less than
o= nol greater than

The next two programs give you some examples of what you can do with
relationals, GOTO and IF..THEN instructions. They also present you with
some challenges, leach you a new instruction o two, and give you a few
BASIC short cuts.

Comparing Values: This program asks you for two numbers, then tells you
which number & the lower one. The program has a few surprises in i ©
keep vou from getting bored.

First, type the program. Then sec f you can figure out whatl's going on
before you run i, Finally, run & and see § you were right.

REW

10 HOME

15 PRINT "To end the program, type a {0 for the first number,"
20 INPUT ®Enter the flrst number: =; ™

i U A b 0 THEN END

30 INPUT "“Enter the second number: ": W2
3 IF Nl » M2 THEN GOTO 100

a0 IF N1 < N2 THEN GOTO 200

4% PRINT "Those aumbers are the sama™ —Howdoesthiswork???

20 GOTC 30
1oo PRINT R2: ™ is lower than "; Nl
110 GO0 20
200 PRINT ¥N1:" is lowar than ™y N2
210 GOTQ 20

Hcre are some questions for you to consider before reading further:
I. There's a new instruction in line 25—END. What docs 1 do?

2. Line 4% will print s message only § both numbers you type for lines 20
and 30 are the same. Why?

How The Program Works: tine 15 lets you know what 1© do 0 stop the
program without using Control-C. The END instruction in line 25 does the
work of slopping lhe program—but only f you type a 0 Linc 45 8

Relational operatorns

cxecuted only when values for N1 and N2 are the same. To see why, look
a the mwo previous lines. Line 35 goes to one part of the program ¥ N2's
value is lower than NI; line 40 goes © another pan of the program f the
oppositc is true. Being the literal *thinker” that % is, your computer
continues on © the next line (line 45) only if there's no reason Mot to—in
this case, T bath values are the same.

Assigning Variables: This ncxt program shows how IF, . THEN can assign
different values w variables. In this instance, the values are different Words.
(They could just = wel be numbers.)

Type the program. Before you run it, figure out

1. What are all those question marks for?

2. What's strange about line 8(?

3. What's line BO for, anyway?

Be sure o figure out the challenges before you run this zoologically
questionable program:

%

"
HeME

T "1, SWIMS“

? n2. WALKS"

B g BT

FRINT

PRIKT "Thlnk of an animal. Then choose av
? "number that best describes how youre
IKPUT “anlmal moves. ™; KNUMBER

82 IF KUMBER> 3 THEN 10

3¢ IF KUMBER < 1 THEW 10

129 IF KUMBER = I THEM ANIMALS ="Fiah®

110 IF KUMBER = 2 THER ANIMALS = "Mammal"

120 IF KUMBER = 3 THEN ANIMALS = "Hird-

130 PRINT

Z00 PRENT "I bet your animal 1s a™; ASMALS

Those question marks are a shont-hand way of typing PRINT. Saving four
keysirokes each time you want 1o use PRINT can save you lots more time

than you think. When you list your program, each question mark will be
converted o PRINT,

BEERI

SBRB.

Line 80 is peculiar in that it leaves ou the word GOTO. ¥ s out that any
of the following forms work for the GOTQ instruction within an IF.. THEN:

IF XUMBER > 3 THEN GOTO 1o
[F NUMIBER > 3 THEN 10
[F NUMBER > 3 GOTC 10

In other words, you can omit THEN or GOTO—but not both,

A Loops axd Conditions

The purpose of lines 80 and 90 is 10 set traps 10 make Sure anyone using
the program doesn't put in a number that's beyond the range of choices,
Traps give your users another chance in case they make a mistake (which s
an annoying human tendency).

Use REM for remark_s

The REM instruction lets you write notes © yourself about what your
program does, and lets you include the notes in the program, These noles
show up only when you list your program; people can't sce them when
they nn k.

For example, you can use REM instructions 0 keep information abour the
program handy, o 1© tell you what the prograin segment is doing:

OO0 AEM* sxcmw v s m s mmme WR Sk h dd ko ok

11g FEM The Great American Computer Frogram
115 REM oy Throckmorton Scribblemonger

120 REM version 16.5

125 REM July 4, 1387

130 REM ArAdAAMAE A A AR AE R AR AR s A AT AT
135 FEM Clear the screen

140 HOME

145 COMMENTS = "REM comments don’t appear on the screen

150 REM Print a message on the screen
155 PRINT COMMENTS

EEM instructions are reminders for people, not for compulers, REM
instructions do nothing 1© your program. When the program reaches one,
t ignores the REM instruction (and anything after € an the same line) and
gcs on [0 the next line,

¢ Put program name g REM line: Make the [itst o second line o your program a
REM line containing the program's name, Then, when you change the program
and want 0 save the new version onlo a disk, you'll always know what name to use,

Practice time

You covered z ot of ground in this session, Before going on, experiment
with what you've leamed. Go back and change the example programs.
Try w “break” some programs; find the limits of the instructions you

Practice time

4]

learned in this session. Certainly writc some programs o your own, Make
mistakes—they're free.

Summary and review

This session showed you how your computer can loop and make decisions
(that is, process information). You use loops fo repeal a process several
imes. Instcad of having b repeat the same line throughout your program,
you can use GOTO Io repeal the lines. This saves a lot of ime in building
your programs.

The IF..THEN instruclion is your computer's “decision maker.” With
IF..THEN, you can branch w different options and jump cuwt o infinite
loops. You can lrap mistakes with IF...THEN 1o make sure the person
using your program types information for INPUT instruclions within the
program’s rangc.

You learned some short cuts for wriling GOTO instruclions within
IF...THEN inslructions, and you saw how 10 ke the question mark in place
of PRINT.

Finally, you saw how 10 usc REM to remind yourself what a particular part of
your program does. DBy using REM throughout your programs, you can
clearly organize your program lines; by marking program segments to
make them easier to find, you make debUgging casicer,

42 Loops and Conditlons

B —

Session 6

Graphics

Up 1o this point, all you've seen on your Apple compuler is text. But you
can also produce some wonderful color graphics. Your computer has
several graphics modes; in this session youll learn the one called low
resohtion graphics. (IUs the easiest 1o use.)

You'll learn the difference between your computer's text and graphic
modes, while learning the GR and TEXT instructions, You'll see how 1o use
COLOR= 10 sd one of sixieen colors o use with PLOT (for plotting points),
VLIN {for drawing vertical lines) and HLIN (for drawing horizontal lines).

Besides all this, you'll learn the RND instruction for producing random
numbers—which youll use, in tum, to produce some pretty snazzy
graphics.

— e —_ _____
Text and graphics

Your computer has separale modes for text and graphics, (A mode is anv
of several ways a compuler interprets information.)

To get started, you need 10 know Iwo instructions—one o get into
graphics mode and one 1© get oul. When you turt on your computer, i
automatically goes into text mode. When you lype the instruction GR for
graphics, your computer goes inlo graphics mode.

Type the command

GR
(dont use a line number) and press Return,

Your screen went blank, and the cursor popped up a the bottom of the
screen. The top of the screen, above the cursor, is for graphics; it takes
up) of the screerm’s 24 lines, The bollom four lines are for text.

" For non-color users; Everything in this session assumes you're using a color
monitor o color television set, If yOu're using a2 black and white TV or a
monochrome monitor, the shapes you draw are displayed in different patterns
instead of in cdors.

4 Gophlcs

Type and run this progjn;/’——/-"‘mm an graphlcs
NEW e

e Pl O cofor,

il e
—_

20 COLOR= 3 me———" e
110 Wi B IR

100 PRINT "Purple Sguare on Black Fleld (1386)"———Greatarnalwayshasatifle.

« Porapoint,

A 40-by-40 canvas

The low-resolulion graphics screen 8 a 40-by-40 grid. The PLOT instruction
places a block in the horiz.onial and vertical posilions you specify, PLOT 0,
0 would place a block in the upper-left corner, and PLOT 29, 39 would put
a block in the lower-right corner.

Add the following lines © the program you just typed 1o sce the limits of
PLOT. (Don't worry about not being able © see the rest of your program;
you'll see i all again n a minutc.)

5 PLOT O, O

50 PLOT 39, 3%

RUN

When you run 1 now, youll sece three blocks running diagonally down the
screen. 'The one in the upper-left corner S position 0, G the one & the
lower-lef1 5 position 39, 39. Here's what the whole matrix looks like:

0, 0 12,0 39, 0

0, 33 19, 39 33,32

A Aroy-a0 carnvas

Before continuing, sec f you can plot blocks m the lower-lef! cofner,
upper-right corner, and the middle of the lefi and aght sides, Once you
know how 10 do that, you can plot anywherc you wang,

Seeing your listing again

When you added new lines to your program, all the text above the new
ines scrolled ow of sight behind the graphics. To sec your listing again,
youll need 1o get back o text mode,

Using immediate execution (that is, giving an instruction without a line
number), lype :

TEXT
and press Return,

The strange paticrn you sec s the resull of yow Apple locking a s own

graphics symbols and mnterpretng them as text. To humans, it's just junk
(or Punk Am). Type:

HOME

and press Rewrn. Then Iist the program. If you got the last program
right, your listing locks something like this:

LIST

10
20
Elel
40
5
el
o
ap
80

109 PRINT

R

COLOR= 3

PLOT
FLOT
PLOT
PLOT
FLOT
PLOT
PLOT

19,
0, 0
32, 39

g, 3%

B,

g, 19

a3, 19

"Burple Sguare

18

on Black Field (1988)"

Graphics

Eloh‘ing colors with COLOR=

The COLOR= instruction {ihe = is part of the instruction) lets you decide
what colors go where. Here's a chart of all the colors you can usc:

Numibet Color Numbaer Color

0 Black B Brown

1 Magcnta 9 Orange

2 Dark Blue 10 Dark Gray
3 Purple 1 Pink

4 Dark Green 12 Green

5 Gray 13 Yellow

6 Blue M Aqua

7 Light Bluc 15 White

The COLOR= instruction by itsell wont add color o anything. I colors
only what you draw on the screen. The color you sa with COLOR= s1ays in
foree until the next COLOR= instruction.

Add this new linc 10 your program:

8% COLOA=]13

Now run the program and see what happens.

& Uncititering the dext: You've got only four lines of text when you use graphics
mode; you don'l need o have one of those four lines cluttered up with a lel-over
RUN instruction. Aesthetics are, alter all, important. Adding 2 HOME
instruction early in the program (say, a line 9 will ake care o the problem
nicely.

Using variables for plotting and coloring
You can use variables for ploting points and setting colors. Instead o

using absoiute numbers a in COLOR= 10 or PLOT 10, 24, you can type COLOR=
BUE or PLOT COLUMN, ROW.

Type this next program. Bdore you nun it, sec ¥ you can figure out what's
happening:

Using variables for platting and coloring

NEH

18 &R

20 COLOR= 11 11 spink.

10 PLOT COLEMN, ROW Iritial value of o variablesis zero
40 COLOMK = COLUMN + 1 Daon't ponic; explanation o iollow,
50 IF COLUMN > 39 GOTO HO 3915 highast column number on grd
B0 WOW ~ FOW + 3

0 COTO 30 Dot dl again,

BU ERD

Incrementing columns and rows

Line 40 is called a counter in computer terms. Every lime the computer
exccules line 40, the value of the counter (cdled COLUMN) increases by
onc. In everyday language, the line says, “Take the old value of COLUMN
and add 1 1o k. From now on, use the new value” The original value of
COLUMN s 0 (all variables start with a value of 0). After the computer
passes line 40 the first ume, COLUMN holds 1; after the second time, i
holds 2 And so 1 goes until COLUMN holds a value greater than %
(according to line 50, and the program ends.

“ For budding computer geniuses only: Draw a diagonal line that crasses the [irst
one—ihal is, one that slants at the upper-righl corner and goes 1o the lower-left.
I's lougher Lthan & sounds, but once you figure I out, is simplicity will astound
You,

Maybe,
Hint: Stan al 32 and work backwards,

—

Drawing horizontal and vertical lines

The PLOT instruction creates one block a 2 time, To draw a vertical or
horizontal line with PLOT, you could program a sequence of connected
blocks, just as you did t© make a diagonal line. With Applesofi BASIC,
though, it's a lot easier io use HLIN {dor horizontal line) and VLIN (for
vertical ling). You use the same plotting coordinates as with PLOT. For
HLIN, you put in the beginning and ending horizontal positions al a vertical
position with the AT insiruction:

HLIN FIRST, LAST AT ROW

For VLIN, give the beginning and ending vertical positions at a horizontal
position:

VLIN FIRST, LAST AT COLUMN

) Gicphics

Lock at this ncxt example to see how to make a cross on the screen:

KEW

19 GR

20 COLOR = 13

30 HLIN 10,30 AT 19 Cx owsallinelaittoright

40 VLIN 10,30 AT 19 Dr awsalne up ond down,

Lines 30 and 40 look identical excepl one uscs HLIN and the other VLN,

As an cxercise, change line 30 so that instead of a cross, the lines make 2 T
wilth the horizontal line right acress the lop of the vertical line.

A universal line-drawer

This program kts you put in different values to draw different lines. Use it
until you get a fed for where different values draw lines on the matrix:

KEW

5 REXT

10 HOME

20 THPUT “Beglnning block of HLIK: *: HB
32 INPUT *Ending block of HLIN: *; HE
40 TNPUT "Row for HLIN: ™:HP

50 INPYT "Beginning bleck of vLIN: ";vB
60 INPUI "Ending block of VLIN: =;VE
1% INPUT *"Column for VLIN: ™:vP

100 REM ananmans ans aans awa

il0 REx DRAW THE LIKES

120 REM #a Aarf ed v Awfl ox v w9

120 GR

" i) GOLOR= 15

150 HLIN HB,.HE AT WP

160 VLIN VB.VE AT VP

17¢ INPUT "More lines (Y/Np?v; AS

180 IF ANS = "Y" THEN 10

Try different values until you can predict exactly where the vertical and
horiz.ontal lines will go. Just for the experience, enter values beyond the
range of the matrix (that is, greater than 39). For example, enter a value of
S0 © sece what happens. Leaming what error messages mean iS just 2s
important as learning how to do things without gelting crror messages.
Later, when you make a mistake (and everybody makes mistakes while
learning o program), you'll have a benter idea of how o fix it

Before you go on, modify the program so that 1 asks you what color you
want oo use. If you're really feeling on top o things, add some code that

Drawing horizontal and vertical lines

displays the line coordinates at the bottom of the screen; the resulting text
should look like this:

Horizontal lire from i0 to 35 in row 15
Vartical jine from 18 te 26 in column 25

Random graphics

Your computer has a random-nomber gencrator buill into it With it, you
can have your compuler pull numbers owt of Is electronic hat. The RIND
instruction by itself generates random decimal numbers between O and 1.

‘Iry this program:

Las progrom wad grophics
o

16 T=xT

26 powy e "G} O 1O COUNIGH.
1G COUNT = COUST. & 1
px pEINT e) Pt g random numibad.

Wl T o)

A0 IF COUNY = 4 TSN CCTO '.‘t:———___________

49 Somh Ik Fiva nurncowe printod vot?
6 END \\
\ ¥ro, w OIS ONOOM rUrmDE .

It yos, et gng,

RND always prints 2 decimal number between 0 and 1. But by multiplying
whalever 1 produces by some whole number, you can make @ cough uvp
numbers your compuler ¢an use o make graphics.

Change line 40 © this:
a4y PRINT RNDI 1) = 40 ParenthesasofterRNDrequired.

Now run the program again. All the numbers are greater than 0 and less
than 40.

% Parentheses requiredwith KND- You must follow RND with a number enclosed in
parentheses. To make sure RND produces a different series of random numbers
every lime you wse i, wse) or a higher number. (Experimentors: 1o gel a
repealing serics of numbers, 1se ¢ o 2 negative number)

Type and run this variation on the same program; & puts each random
number in a variable as the random number is produced:

50 Grophics

5 TEXT
i0 HOME
20 NUMBER= RND{ 1} * 40

3 PRINT NUMBER

40 IF NUMBER» 38 THEN GOTIQ B0
0 GoTD 20

8 PRINT "That’s it!"

0 END

This program runs until the random-number generator produces a number
greater than 38 Sometimes & lists a lot of numbers, and other times just a
lew, depending on how soon a number greater than 38 comes up. Notice,
by the way, that the program generates numbers between ¢ and
39.9999—never any number a8 high as 40,

All you do to generate random graphics 8 t© use randomly generated
variables n PLOT. You can also use randomly generated numbers to
produce different colors as well,

Type and run this next program for some colorful results:

10 GR

15 REM CCLORS 0 - 15

HUE = RRD{ 1) ™ 16

REM HORIZONTAL WaLUES O - 29
COLUMN = RND{ 1) " 40

REM VERTICAL VALUES 0 = 33
ROW= RND[17 * 40

COLOR = HUE

PLOT COLUMN, ROW

IF RGCW> 39 THEN END

GOTO 20

BagHsrEE

-,
e

What about the fractioniat part? A graphics instruction looks only a1 the whole
part of a number; I ignores the fractional part. To a graphics instruction,
39900099 k& 3, 1111111 is 1; and any positive number less than 1 is O,

A Minor Challenge for You: Nothing heavy—just change the program so
that & randomly generates horizontal and vertical lines of fandom length.

Random grophlcs

51

—— — ——

Summary and review

Color graphics add another dimension 1o your programming. You can
create uscful programs with them, and theyre lots of fun to play with.
Low-resolution graphics make rough figures, but they have a lot of color
and makc good graphs. You use PLOT, HLIN, VLIN, and COLOR= along
with other programming instructions 1o build graphic images. The
randem-number generator inside your Apple can automatically churn out
any range of numbers you want. When you combine RAD and the
graphics instructions, you can create a kaleidoscope of shapes and colors,

2 Grophics

Session 7

Controlled Loops

In this session, you'll continue © learn about loops. You alrcady know how
o do loops with GOTQO. Here, you'll learn about the FOR\NEXT
instruetion, which lets you decide n advance how many times a loop gets
cxecuted. Youwll learn some tricks using loops (like how 1o slow down
program execution). And as a bonus, youll see how o do simple
anination,

The session cnds with a list <f all the commands, instrudions, operators,
and programming concepts you've learned so far: the list is impressive.

FORANEXT

You saw in Session 5 how (o use a counter with IF,. THEN o conirol how
many limes your computer performs a loop:

Mes

10 &R

20 COLOR= 11 100D 50T hote.

30 PLOT COLIMN, ROW ————"""

40 COLUMN = COLUMN + 1 Hete sthecounter _

50 IF COLUMN » 39 GOTO 80 .. togatyououtottheloop
6 ROW = ROW + 1

10 GOTC loop ends hee.

80 E¥D

The FORMNEXT instruction lets you define at the outsel how inany incs
your program will loop. I has Is own built-in counter. Here's the
structure of this two-pant instruction:

FOR < variable> » < start >TO < finish>
< instructions i here get carricd our>
NEXT < vanable >

This program uses FORMNEXT o repeat a loop 10 times, Type and run i:

54 Contriolled Loops

« Last program was grophlcs: restoras text mode.

b

10 TEXT - """, Claors away the |urk

20 BOME———

30 FOR ROUND = 1 TO 1o ——==ThizikthaFORpar ...

40 PRINT n"This is round 4 "; ROUND e————0ou .. dl Instructions within the kop get executed...
50 NEXT ROUND .ong this B the NEXT pat.

When you run this program, the value of ROUND goes from one fo ten.
The variable ROUND behaves just like any other variable, and as you sec on
your screen, the numbers represent the values the loop generates. All of
the lines betwecn the FOR and the NEXT are repcated until the loop
reaches s maximum value. In Lhis case that value s ten.

You can start the loop al any value you want. Herc's a bunch of line 30's
you can substitule (one at a time, of coursc) lo see what happens:

J0 FOR ROUND = COTO 20
3¢ FCR ROUND = =10 TG 10 Begnwithanggative numbear.

30 FOR ROUND = 128 T 255

Instead of using numbers 10 sel up the FOR\NEXT loop, you can use
variables. For example, the following program leis you wse INPUT 1o set
up the beginning and cnding valucs of the loop:

REW

19 HOME

20 INPUT "Lowest number: "; 1OW
33 INPRT "Highest numbpar; v HIGH
43 HQME

5] FOR KUM = LOA TO HIGH

60 PRINT RUM

e HEXT NUM

The FOR\NEXT loop works equally well with graphics. By selling up a
FOR\NEXT loop, you can draw diagonal lines 1o go with your vertcal and
horizontal oncs. lere's the original program:

FORANEXT

18 Gr
20 COLOR= 11 Loop $horm hare.
PLOT COLUM.YN, ROW = e ——
40 COLUMN = COLUMN » To=— Hata's the Courted ..
50 JF COLUMN> 29 GOTO B0 .o get youout ol the loop.
£ RACW = RON « 1.
M GoTo 30 LoOE ands hera.
A2 EnD

Here's the FOBRBANEXT version:

L9 GR

20 COLOR= 11

32 FOR COUNT= 0 TO 33
40 PLOT COUNT, COUNT
50 NEXT COUNT

Using STEP with FOR\ NEXT

Sometimes you'll want © count backwards or skip numbers in a program.

Use STEP with FORMNEXT o specify the direction of the count and the
increment.

For example, this program counts by §'s. Type and run it

REW

B TEXT

12 HOME

20 FOR NUMBER = 10 TO 100 STEP 5 el Hera'sthelnalGlookar.

3¢ PRINT NUMBER
42 NEXT NUMBER

And this one counts backwards:
1D HOME

20 FOR COUNTDOWE = 10 TOO STEP -1
30 PRINT COUNTDOWN

40 NEXT COUNTDOWN
50 PRINT r~BLAST OFF!™

(Five extra points § you can draw the rocket)

You can even create simple animation that uses Forward and backward
stepping in graphics. Here's a bouncing block:

56 Controlled Loops

METT

10 &R

0 FOR BOUNCE = ¢ TD 39 Sats color 10 white..

30 COLOR = 15 e ...50 YOU CON 500 'the block.
40 PLOT 19, BOUNCE —e—————""

% COLOR = @ Sals color o block...

& PLOT 18 HOUNCE L. 30 yOou o erase It

W NEXT BOUNCE

100 REM #svadsavwdsdaa

110 REM EBOUNCE W

1200 REM wscesvmesdinm

130 FOR BOUNCE = 39 TO 0 STEF -1
140 CAOLOR= 15

130 PFLOT 1%, EOUNCE

160 COLOR = 0

170 PLOT 19, BOUNCE

180 HEXT BOUNCE

You can sce how easy that was to do with a backward STEP. By the way,
the ball will keep on bouncing f you add :

180 GOTG 20
11 get really pretty £ lines 30 and 140 read;
COLOR= RNDY 13 * 16

To make the ball bounce diagonally, change—well, you figure that oul on
your own.

Delay loaps

Sometimes you'll want to slew down your program so that you can sce
things happen on the screen that cordinarily go by o fast

For example, type and run this next program 10 print a message on the
screen, clear the screen, and print ancther message:

MEW

2 TEXT

5 3TALL- 1000 Changethisvaluetochongathapauselength
10 HGME

2 PRINT *A VERY IMPORTAMT MESSAGE" e o0 Show massage .,
0 FOR PAUSE=] 0 SrALL wholdtt.,

35 MEXT PARUSE

40 HOME ..clear the scraen .
50 PRINT “BE SURE T SAVE YOUR PROGRAMS™ ..show message...
B0 FOR PAUSE-1 T& STALL Lheldit

65 NEXT PROSE

10 HOME ..clear the scroen.

80 FRINT "“BEFORE YOU TURN OFF YOQUR COMBUTER!™

Delay locops

The empty FOR\NEXT loops between showing the messages and the
HOME instructions give you time 10 read what's on the screen, (Take out
lines 30, 35, 60, and 65— just type their line numbers and press
Return—and the messages will My by o fast for you 1© read when you run
the program.)

Use delay loops when you want several messages 1o be presenited
auwtomatically, and when you don't want 10 press any keys 1© soe the next
message, You can make nasheard-lype review programs with short delay
loops,

For a spelling quiz, have a word pop on the screen long enough 0 be read
bul nat long enough 1© be spelled. Here's a quick one o try:

NEW

5 STALL = 150 Changathisvaluero change the pouse length

1o HOME

20 FEH EEEEEEEIEEEIEEREEIEEE Y

A0 FEM SPELLING WORDS

qa REM R R R S R N

50 AS= "DOCK*

60 B = "JEWELRY"

70 €% = "pROGRAMMING"™

1ﬂnRE'M IR R IR

116 REM SPELLING TEST

lzn R'E-H Ak My gy "EE N, BN EEEN

L3 PRINT AS

140 FOR LOOK = 1 T STALL Hera's a delay leop.
145 NIXT LOOK

& . 11 vr

160 INpUT "SPELL THE WOAD »; SPELLS

170 I SPELLS = A§ THEN RIGHT = RIGHT + I=—Countor odds uo conect malings
180 PRINT BS

150 FOR lLODK= 1 T STALL Anotherdalayioop.
185 MEXT Lo

200 §OME

£10 INPUT »sPEL!, THE WORD »; SPELLS

220 IF SPELLS = BS THEN RIGHT~ RIGHT:1

230 PRINT <5

240 FOR LOOK » 1 TO STALL Y atgnotherdelayioop.
245 NELXT LOOK

250 WIM.E

260 INPUT "SPELL THE WORD ™; SPELLS

270 1FF SPELLS= €5 THEN RIGHT= RIGHT -l

280 EOME

230 PRINT "You got " RIGHT; " weords xight.-

You can change the values in the delay loop (line 5) o give yoursclf more
o kss lime 10 see the word,

58 Centroled Loops

A quick review

You've come a long way in programming alrcady, so now would be a good
time o review whal you've learned in these first seven sessions. In gencral,
i's important o keep things simple—ake programming a little chunk at a
time. Here's a list of everything you've learned so far. If you've forgotien

any of these terms, look them up i the glossary o check the index and go
back to the appropriale session o read about them again:

Commands

CAT DELETE
LET LOAD
PR#*0 RUN
Instructions

COLOR= END
HOME FOR[STEPANEXT
HLIN IE... THEN
PLOT PRINT
REM TEXT
Operators

+

/ (

& >

= m
Cancepils

Counter

Immediate and Deferred Execution
Loops
Mumeric Variables

Prompting Messages

NEY
PR#1
SAVE

GR
GOTO
INPUT
AND
VLIN

Delay Loops
Ling Numbers

Meaningful Names with Intcrvals
Precedence

String Variables

A Quile review

59

Hperimeﬁ_t_ before you continue

The final three sessions give you some refinements on the instructions and
techniques you've learned so far, and introduce some more tricks and
techniques. Defore you go on, use what you've icamed 1o invent your own
programs and o experiment. It's important 1© enjoy what you do with
your computer, arxl by writing programs that do things you like, not only
will you learn programming, but youli have a good time as weil

Summary and review

In this session you worked with Joops again—but these were controlied
ioops. You refined your wse of counters and discovered a new loop called
FORVNEXT. You icarncd something about computer animation, and you
saw how © slow down a program by using dclay ioops. Then (unicss you
took this opportunity 1o challenge authority) you went over all the
instructions and concepts you've learned so far, and you created new
programs of your own design.

&0 Controlled Loops

Session 8

Programming With Style:
Modular Programming

You have cnough knowledge now to wrile some very useful programs, In
fact, & the end of this session, youll be assigned the task of conslrucling a
program 10 balance a checkbook.

Notice the word constructing in that last scnience. The besl programs
aren't just lists of code lines; rather, theyre weli-planned collections of
program scgments, cach scgmenl with is own job. In this session, youre

going 1o learn aboul program organiration and the concepl of program
modules,

GOSUB\RETURN
You'll often wan! © do the same thing in different parts of a program. For

example, in Session 7 you used the same delay loop three times in a fairly
short program:

B0 FOR PAUSE = 1 TO STALL
70 NEMXT PAUSE

Imagine a program n which you used lhe same lines ten, twenly, o thirly
tirmes—and how liresome typing the same thing again and again would
become (and how much o your computer's RAM your program ‘would
usc). Now consider the more common situation, where the repeated
rouline (hal is, collection of lincs that docs one specific funclion), rather
than being just four lnes long, is 10 or mare lines long. By the time you
were finished, you'd wear your fingers down to the second knuckle,

BASIC's GOSUBARETURN instruction 1s made for just such sitvalions. You

type a rouline just once and keep using the same lines Gwith exacily the
same line numbers) again and again,

licre's how the PAUSE program looks without GOSUBARETURN:

&2 Prograrmming Wih Style: Modular Programming

5 STALL = 1000

10 B E

20 PRINT ™A VERY IV.PORTANT MESSAGE"

X FOR PAUSE=] TO STALL

35 KEXT PAODSE

40 HOME

50 PRINT “BE SURE TO SAVE YOUR PROGRAMS™
& FOR PAUSE = 1 T0 STALL

65 NEXT PAUSE

0 HONE

B0 PRINT "BEFORE YOU TURN OFF YOUR COMPUTER!™

And here 1 b uath GOSUB\RETURN. Type and run it

KE#

§ 5TALL = 1000

10 HOME

20 MESSAGES = *A VERY IMPOATANT MESSACE™

¥ GisiJB 210 =0 toa subiouting atline 210
40 MESSAGES = "HE SURE TO SAVE YOUR PROGRAMS™
50
&0

GosuB 210
MESSAGES = “HEFCORE YOU TURN OFF YCUR COM.PUTER!™
10 GOsSUB 210
190 E£ND Youmusihavethisheres,
200 REM we=s MESSAGE SUBROUTINE ereem=s
210 HOME Subr outinestanshere,
220 PRINT MESSAGES
230 FOR PAUSE= 1 TO STALL
240 MEXT PAUSE

250 RETURH Subroutine ends here. program retums o ploce

theat st it hom wih GOSLB,

GOSUR means “Go 1o a subroutine.” (A subroatine is a routine within a
program reached through a GOSUB instruction.) Like GOTO, GOSUB
makes (he program go owt of the normal sequence of line numbers o do
something, Unlike GOTO, GOSUB retumns i the point that i left; that's
whar RETURN does at the end of the subroutine. You don't have © keep
track of the line number to po back to, GOSUBMRETURN keeps track for
you.

E\ID -protecfs_sEroutines

Subroutines usually appear a the end of a program (sub is Latin for wder),
as N the examples in this session. You need © include an EXND instruction
between youwr main program and your subroutines.

To see why, take ouwt the END instruction & line 190 and run the program.
(To ke out a line, just type is line number and press Return.)

END prolects subroutines

63

You got the error message RETURN WITHOLT GOSUIR, Your computer
expects © sce a RETURN instruction only when a GOSUDR sends & © a
subrouting. If i encounters a RETURN by chance (as in this case), i
doesn't know where 10 return 1o, gets confused, and tells you so with the
CrTor MESSage.

One way 10 make sure your subroutincs are isolated from the main
program is © decide right away what line numnber your subroutines will
start at, then put a line number and an END instruction right before that
number, In the program you've been working with, the subroutine starts
a linc 210, just after the REM instruction at kne 200; so the END instruction
comes in line 190,

Subroutines and organization

In this next example, the code appears in subroutines, not because the
program re-uses certain linc segments ofien, but just because the program
is easier © read and more organized that way. As you ga beter as a
programmer, your programs tend © get longer and do more things. As
that happens, having good organization in your coce becomes more and
more impariant,

Type and run this pregram. Note what's new about some o the lines that
held REM instructions:

YEW

5 UM AP A EFRERERERAEEEEEEENEEISEEEERRNEREEEENEREERER

10 REM Random Nurbar Ganeratcr Program

\F REM This program generates 43 many Tandom numbers
14 REW as the user wants. It also lets the user degide
16 REM the range of numbags,

is IIE:!! AP RS AAR ST P FTRARFEF IR AR TA N AN TR TS A AR

20 GOSUB 1014 AEM Tltle page

N GOosUdg 1lie REM How many numbers & what rangae?

0 GosS0B 1210 TEN eheratr rdsalis pislera

5¢ GOEe 131@ REM Go agaln?

60 1f AN = Y~ THEN 30 : REM Repeat if yas...

M PRINT

80 PRINT ™“Thankk Ifor the scree@n space.™ : REM .,.1f ngg, end
99 [

N . T

1002 HEM sracsassatradradasnndandanann -

1004 REx Titie Page
!{m‘ Rin AEEVARAEAIEEBASFE B RS SRR R

1010 HOME

16X) PRINT "~Random Mumber Generalpr”

&4 Progromming Wih Style: Modular Programming

1p20 PRINT "Random Humber Generator”

102¢ PRINT

iD4G PRIRT "This pregram prints as many randem numbers®

105¢ PRINT "as you want betwsen O and any limit you chooge.n
1060 PRINT

10710 PRINT

1080 INPUT r"Presxz Rebturn to start: m.Starth

1090 RETURNW

1102 PFEM wstss vz pvasdidh daddbvd ook dadun

1104 REM How many numbers & what limit?

1106 REH FE FAFAFdag i aRE A FERARARNE &40 aNEN

1110 HOHE

1120 INPUT -How many nusbers do you want? ®; RNUMS

1130 FRINT

1140 INPUT *What's the highest a mumber can be? ™ LIMIT
1152 RETURN

1202 REM ®ims@fiidegitdGdaaddakdmihed Ated

1204 REM Ganerate Random Nuombers
1205 EM PRl (LT TERES S br it S B IS B R AR R i bl el e Y

1210 FOR COUNT = I T O RMUMS

1220 NUM = RHD{ I} * LIMIT

1230 PRINT HUM

1240 HEXT COUNT

1250 PRINT

1260 RETURN

1302 REM % et aaat aaanige

1304 REM Go agaln?
1306 REM Mafsaataaraairees

1310 INPUT “Do you want more random nu-bers? {Y/Hp "; ANS
1320 RETURH

This program uses a ot of subroutines © make i easier 10 see what's
happening. Add 1© that all the REXM instructions and the meaningful
variable names, and you have a program that's especially easy o
follow—both now, when you've just wrilten i, and six months from now
when you might decide o change a few of the lines.

Multiple instructions on one line

You've probably already figured out that you can have more than one
instruction on z line f you put a colon () between instructions. Examples
abound throughout the previous program. The program uses the colon

Multiple structionson one Ina

&5

only o add REM instructions, but you can use the colon with all
instructions, Be careful, though, sometimes the results can surprise you.

For example, ¥ you Start a line with a REM insiruction, your computer
ignores the whole line and not just the REM instruction:

0 REM This whole line ignored : GDSUB 1010 ————==G0OSUB Ignor ed!
well leave it 10 your own experimenting to discover other such surprises.

Organizing your programs: one step ot time

Sometimes the scope of a program feds overwhelming. I scems o
complex or wo long o st beyond your skill level. Sometimes that's iruc.
You really don't have the ability to writc a program that will control the
nation's budget (and apparcnily, neither does anybody ¢is¢). But you can
do more than you probably realize with the things you've already learned.
You can, for example, wrilc a program to balance yowr c¢heckbook,

The wick is to break down the task into ¢asily manageable segments. Think
for a moment how you balance your checkbook when you do it by hand:

1. Get the starting balance.
2. Add in the deposits.
a, Ga the amount of a deposit,
b. Add that amount 10 the balance 1o produce a new balance.
c. Keep doing steps a and b until all deposits are added in.
3, Subtract amounts for checks,
a. Get the amount o a check.
b. Subtract that amount from the balance © produce a new balance.
c Keep doing steps a and b uniil all checks are deducied.
4, Print the balance,
What you've just done is written ou thealgorithm (that is, the method o
solve the problem) for balancing a checkbook. Your next step is 10 write
modules for the steps in the algorithm; then all you need 10 do is line up

the modules in the proper way. Program organization 15 a matter of lining
up simple modules to work together.

1.8 Progromiming Wih Shden Moduior Frogramming

The great chec_kbook bcluna;g program challenge

Lse the algorithm to write your own checkbook balancing program. Add

a module that sets up a little menu so you can choose what to do first—add
the total of checks written, or add up deposits.

After you've wrilten your own version, have your computer print 1 out and
then check i against the one listed here. Treat this a5 an opportunity o
see how well youve undersicod what you've read I this tutorial. Take all
the time you need; afd remember 1 use REM lines liberally!

One version of a checkbook balancing program

This is just one version. I your version works, then it's just as good as this
one. This version 5 here just in case you got stuck,

The important thing about this version is that i breaks the task down inte
simple Steps:

Module 1

sm SRR A SRR R EE X E AR R REE RN |

1 REM CHECKBOOK BALANCER
15 EH EFEFRES P ERS RS LRl oy
20 HOME

3 INPUT TPlease type starting balance: $ "/ BALANCE
40 PRINT

50 PRINT "“1. Enter Depeslts™
8) PRIRT "2. Write Checks"
0 PRINT =3. End-

B0 IKPUT "CHOOSE BY NUMBER": NUMBER
90 IF NUMDER = 1 THEN GOSUB 200

160 IF NUMBER = 2 THEN GOSUE 2300

110 7F WUMBER = 3 THEN GOTO 17

120 IF NUMBER> 3 THEN GOTO 40 Trapsoutofranga numbers,
130 PRINT *Your working balance 13§ "7 BALANCE

140 PRINT

1506 INPUT "“Press Return to centlnuoe: =;STALLS— _Wails by user tobe leody,
160 GOTG 40

170 PRINT

180 PRINT rYour =nding balance ia$ “?BALANCE

190 END

The first module represents the *body” of the program. Subroutines

handle cvery other task. The next module handles depesits and adds them
© the balance.

The great chackbock balancing progrom challsnge

Module 2

200 REH EEREFERE TR n

210 AFM MAKE DEPDSITS

220 RIM "¢ avsanue ansmeas

230 RHOME

240 WPUI "How many deposits did you make? ™! ND

250 FOR ¥= 1 TC ND

260 INPUT "amaunt of dapoait: 5 = DEF

270 BALANCE =~ BALANCE + DEP Keepi running fotal,
280 HNEXT X

2% RITURN

Next, do the same thing for checks, except instecad of adding to the
halance, you subtract from .

Module 3

]Du R_EM CRCE I B T I N A ARy}

310 REM WRITE CHECKS

320 N:ld F FE OFR NN FEF BFADE B

1310 HOUE

340 IMPUT “How =any checkas did vyou write? *; HNC

350 FOR M= 1 TO NC

360 INPUT ~Amannt of chesk; 5 ™7 CHECX

370 BALANCE = BALANCE - CrIE.CK Keepsmumningtotal
380 NEXT X

3930 RETURN

When you go over this program, it's casy o see what each part does, The
REM lines show a a glance what happens in the subroutines.

Save your program onio the disk. In the next session, youll learn how o
make your programs inore diltractive, and this program will be a good onc
for you 1o praclice on.

Surnmary and review

In this session, you lcarmed abouwt the GOSUBVRETURN instruction pair and
about the importance of good program organization.

The GOSUBARETUR.N instruction pair helps 10 organize programs inlo
simple modules, Each subroutine is simply a iask, Putting all the tasks
logether in an organized way is the sead o efficient programming, Its
not how complex a program is, but rather how simple and well-organized
1 is. Keep that in mind, and you can tackle much larger tasks,

“Keep & siinple”™ best summmarizes Lhis chapter. Break a program down
into is component parts, and 1 becomes far easier o wrile.

o8 Progiomming With Siyle: ModJdar Programming

Session 9

Formatting Screens

Generating inf ormation on a computer s cxciting and rowarding. But the
way you present the information s ofien just as important as the
information itsclf. Just as a neatly organized and printed page conveys
more information than a bunch of scribbles on a scrap of paper, $0 wo
does a wel laid-out display have a greater impact than a barrage of
characters hurled at the screen.

Clear screen presentation not only helps communicate ideas; 1 helps you
organize your program as well. When you think about how something is
going w look on your screen, you're also deciding what order your
program must follow b gel the resulls yDu want, Many programmers
decide what all the screens are going © look like even before they begin w©
wrile the program,

This session teaches you the instructions and some of the techniques you
need 0 create geod screen presentations. You'll learn about placing text,
highlighting important words, and creating menus, HTAB and VTAB let
you place text anywhere on the screen. INVERSE lets you display
uppercasce text in dark characters against a light background {the opposite
of what & usually is); NORMAL turns INVERSE off, Youll see how ©
control the placement of INPUT prompis. And you'll learn an algorithm
for centering text.

Horizontal and vertical tabs

On 2 typewriter, you place your tab stops acrass the page. On your
compuier, you use HTAB w determine where the next tab stop will be

Type and run this program:

NEN

10 HOMIZ

20 TAR 20

30 PRINT ™IERI; IT IS¢

YWihout linc 20, the message appears in the upper-left comner of your
screen. T'he TITAB instruction makes the text begin twenty columns w the
right. HTAB has a range from Oto 255; you usc & 0 place text anywhere
across the screen. On the 40-column screen, cach increment over 40
places ihe text onc more line down. For example, HTAB 120 places text
down three lines (120 / 40 = 3).

b formatting Screens

Type the following program and run it

13 HOME

20 INPUT »HTABR value (9-253) "™ W2
X HTARE HZ

4 BRINT "x“

50 BRINT

60 HTAR 20

0 INPUT "“Anather HKTAB?2IY/NY »f ANS
g0 IF ANS = "¥" THEN 10

% PRINT "Thanks for trying me out i
100 EMD Cptioral ending.

Usually voull use HTAB just to position your text horizontally. To make
vertical 12bs, vouwll use VTAD, VTAB works just like SITAB, but & can have
values only from 1o 24

4 atianes Lets war know program's cver.

To gel a quick idea of how VTAB works, run this next litle program:

NEW

1¢ HERIE

20 VTAB 10

L PRINT "ARBROUT HERE"

Combining HTAB and VTARB, you can place text anywhere on the screen,

This pext program lets you experiment with putting things on your screen
anywhere you want. Type and run it

10 HOME

2 INPUT "HTAB position (1 - 400 "; H2
2% I H2 » 40 THEN PRINT *Tooc highl™ @ GOTD 20
30 INPUT "WTAB poaitien {1 - 24) ™ VT

[/ IF VT> 24 THEN PRINT "Tae high!™ :« GOTS 30
4] HOME

5 vIAB VT : HTAR HZ : PRINT "x¢

& VTAB 22 ' HTAR 20

70 INPUT "Anothr.er? SN gy ANS

g0 IF ANS < nln TREN 10

%) PRINT “Bye, now.™

1199 END

In ings 50 and 60, the HTAB and VTAB instructions arc on the same line.
If you pur HTAB and VTAR together like that, it's a little easier 1o organize
text placement.

Making stylish program mcnus is easy with HTAB and VTAB. This next
program uses a FOR\NEXT loop 1o generate positions for text

Harzontal and vertical fabs

1

NER

10 HOME
20 FOR %=I TO 6
AT HTAR 10 : VIAB 42 * ¥ Canyoufigur s outwhatth s coes?

10 GOSUB 100

50 PRINT X3 ™. ™y MENUS

& NEXT X

70 VITAB 20 : HIaB 5

80 INPUT "Choose by numbér: ©; KUMBER
90 END

100 REM s dambimuma s dd dmoad bk

110 REM MENU SELECTIONS

120 REM s=wmmmamssmmawmssnsn

1301FX = 1 THEN MENIS = *Bring in thea dog"
14¢ IF X = 2 THEN MENUS = "Put out the cat*
120 IF ¥ = 3 THEN MEKNUS = "Feed tha gorilla"
60 IF X = 4 THEN MEMWS = "Wash the seal”
170 IF ¥ = 5 THEN MENUS = "Pat the computler”
180 IF X = 6 THEN MENUS = "ENDT

190 RETULRM

That menu doesnt do anything other than show you how %o use HTAB and
VTAR, Bul you can use this concept as a model n your own programs.

& Why menus with manbers? Good menus lel users make choices by typing just onc

or wo keysirokes. You can sec how imponant good menu design can be when you
look a this sample menu:

¥hich anlmal oo you want infarmacion abouc?

Pathydarm

Prarcciactyl

Ruffed Cirouse

Serval

Programmerus Machinelinguae
Exit Program

Please type your cheice hers: |}

This menu praclically guaraniees a lyping error ffom all but the finest spellers.
Your cxde will have © indude all kinds of special error prowecluon © check your
user's 1yping. Numbered menus eliminaie the problem:

wnlan animal g yns wanh fzfarsatizo about?

1) Pachyders)

2}Ptercdactyl

3'Ruffed Grouse

flServat

S)Frggrammerus Machinelinguae
Bl Ex1t Program

Flease typg your cheice hera (i - 6): |

72 Fomatting Screens

All your user has o do in this menu is type a2 number (and all your code has o
check [or s a numeric range). Numeric menus make things easier for both the
user (whe must type—and perhaps retype—choices) and for he programmer
(who must wrile the codé).

Prompt placement

Good screen design demands that you pay attention 1© how yowr INPUT
prompls appear. Programmers often need 0 ask users for a number of
inputs in a row-——several strect addresses, a number of prices, a series of
names.

Type and run this program, & gets a scries of inputs while keeping things
neat, It uses HTAD and VTAR, plus a new programming lrick:

NEW

i GOSUB 200 You'lreadatoutthisiater,
20 HOME

30 INPUT "HOw many names to enter? "; MAMES

46 HOME

S0 HTAB 5 i VTAR 10

& PRINT "Type in the names one a a time.™

MW FOR X = 1 T NAMES

80 HTAB 17 : VIAB 10 : PRINT SPAQES

% HTAB 17 : wTAR 10

100 INPUT ©Name: ; NAS

110 HEXT X

120 END

203 REM EEEEE R AN EEEEE

210 REM SPACE MAKER

Z20) REM =dm=smmmmma= o

730 FOR S = I TO 20 ; REM SPAOE$ IS 20 SPAOES LONG
240 SPRCES = SPACES + » ©

IS0 UEXT &

260 RETURN

Again, this is just a sample. In a “real” program, you wouldn'l just gel names
and throw them away!

The SpaceMaker: The subroutine a line 200 introduces a nifly
pragramming trick. You could have defined SPACES like this:

SPACES = = " o— 70 spaces, Honegt

But that doesn't give you a very good idea of how many spaces are between
the quotation marks. Using a loop o build SPACES, as the subroutine a
line 200 does, kis you see exactly how big the “blank oul” space & going 10
be,

Prompt placement

73

Of course, you arent limited to just using spaces, Instead of using spaces,
use dashes or underline characters. Be creative—ijust change what's
between the quotation marks in line 240,

Ge_ﬂ:ing noticed: INVERSE and NORMAL

Your compuler can print inverse characters on the screen. The INVERSE
instruction changes text from light-on-dark to dark-on-light. All 1ex after
an INVERSE instruction stays inverse until the program €Omes across a
NORMAL instruction,

Type and run thls little program for a quick demonstration:

HENW

10 HOME

20 INVERSE

30 PRINT ~THIS IS INVERSE™
403 NORMAL

50 PRINT ~THIS IS NORMAL™

If you take out line 40, all of the text will be inverse. Because inverse text is
more usefut n getting auention than i presenting general displays, it's a
good idea o put in the NORMAL instruction right afler you've finished with
INAERSE.

To get the user's altention when the program wanis information, use an
inverse prompt. For example, 0 2 menu program, an inverse prompt
scparates t from the menu choices:

10 HOME
20 TITLES = =MEMU®
W PILINT TITLES

40 FOR X = 1 TD 4

50 HTAR 3 : VIAR {2 = ¥} » 2 Fgur ethisoutyat?
&0 PRINT ~Cholce Humbker =; X

70 KEXT X

B VIAR 20 : INVERSE Tumsiionhere.,

90 INPUT ~CHOOSE ONE; "; CEOOSES

100 NORMAL Landhwnsitecffhere,

1X8 v

74 Famnating Screans

@ INVERSE K FOR UPPERCASE («lY. INVERSE doesnt work wdl with lowemcase
letters. For perverse lechnical reasons, lowercase letlers sornetimes get changed
i other characters when they're displayed in inverse. Experiment before you use
lowercase lemers in your programs, just to be sure.

Experiment some with INVERSE. Try making an inverse line of spaces.
Put your name in inverse—in fact, use inverse text with asterisks o create a
movieé marquce and see your name in lights!

A fext-centering algorithm

AS you saw in the last sc¢ssion, algorithms are {ormulas written 0 peorfom
different tasks. All of the tricks youve scen in these sessions arc actually
algerithms translated inte computer code. As you've been experimenting
with programs on your Apple, chances arc youve developed some of your
own algorithms, Most of the subroutines you've used arc algorithms.

An algorilhm for centering text is handy © have around, especially in a
s€ssion on Scréen Tormatling. To construct that algorithm, you'll need 10
leam the LEN instruction. LEN calculates the length of a string. Here's an
example:

NEW

10 AS="papples Away!"

20 PRINT LEI{ A% Pargnthasas ag reCulred ¢ike RND)
RUN

12

Applas Away! has 12 characters (including the space).

¥When you center text, you put half the characters 0 the left of a line's
midpoint and halfl the characlers o the right.

Now that you have the basic idea, figure out on your own how the
computer would sec it. Write the code, try & out, and then read the
solution in the next seclion.

One solution to the centering problem

Once again, this is just one possible solution. T yours is different and %
works, then yours is just as valid as this one.

Here's the algorithm:

I. Gat the number of characters that f2 on one line (the screen width);
that's either 40 or 80 on your Apple—<choose the one youre using.

2 Find the string lenglth by using LEN.

A text-centering algorithm

3. Subiract the string length from the screen widih; divide the resul by 2,
The result is the position you're locking for.

4. Use HTAB w0 move o that position.
Expressed as computer code, it looks like this:

HTAB (WIDTE - LEM! LETTERSS! } /2 —— All These porentheses o necessary

Use that algorithm in a program that will center any text you type in.
Here's an example that keeps the algorithm in a subroutine. I your display
is 80 columns, change 40 in line 130 1© 80

NEW

10 HOME

20 INPUT "Enter any word: = WS

3 GOSUR 100

46 INVERSE : WIAR 20

53 INPUT "#OULD YOU LIKE ANOTHER (Y/Ny = ANS
60 RORMAL : IF ANS = m¥" THEN 10

70 END

100 REM *semwrpresazas

110 REM CENTER TEXT

120 HFEM s nmanmsamaaanm

130 RTAR (40 - LEM{ W5))f2 : REM CENTERIMNG ALGORITEM
140 VTAER B

150 PRINT wa

160 RETURN

Summary and review

In this session, you learned about the imponance of designing clear screen
displays and about program menus.

Using HTAB and VTAB, you can place text anywhere on the screen. Text
placement helps make clear what you're trying to say o what the program
expecds you o do next.

You learned that the INVERSE and NORMAL Instructions separate and
highlight text on your screen, These instructions help you make the
program easicr 10 use by highlighting important clements on the screen
display.

You also learned that the soul of programming & algoribhms. Like all other
aspecls of programming, you can build your own algorithms by reducing a
task 1© a set of simple parts. lach algorithm, n turn, hecomes a program
building block.

76 Fomoting Screens

Session 10

Programming for People

Congratulations! You've nearly completed your introduction to Applesofl:
BASIC and o the principles of programming. Most of the concepls you
learned in this witorial are traditional ones (as much as a science that's been
around lor only 45 years can have traditions). In this final session, youll
read about soine even newer traditions, onges that have been developing
only since the coming «f personal computers, The ultimaie goal s lo get
you to "humanize® your programs, t© s¢t thain up in such a way that any
computer novice ¢an learn them quickly and use them easily.

You'll also read about how you can get a lot inore help learning lo program
by joining a users group, 1aking programming classes, reading books, and
subscribing o computer magazines.

A sordid history

Back in the oid days (that is, before 1980 or so), programmers spent
almost none « their time teaching their computers how 1o behave with
humans. Prograinmers were primarily concerned with getting their
programs & work without being stopped 0o ofien by error messages;
because they themselves were usually the only people wix used their
programs, what they wrote didn't have 1 be "user-friendly.” That was OK
then; most people prograinmed for themselves and didnt share their
prograins with wo many other people.

But remarkable changes have taken place over the last few years. Literally
millions o people now own computers, and many thousands wrile
programs for thenselves, their business colleagues, and their [riends. Most
programmers, both hobbicsts and professionals, belong o users
groups—associations o computer owners who get together monthly (the
fanatics do 1 weekly) o share their experiences, discoveries, and
homemade programs.

If youre going 1o team up with this ever-growing group of sharing
programiners (and § you conlinue o program, it's likely you will), it's
important that you make your programs a5 easy o use a possible. The
idea that programs and computers should be made for people and mxx the
other way around is still revolutionary in a Joi o circles. You arc hercby
officially invited o join the revolution.

78 Proagramming fo Peopls

PeOpIe-program_guidelines

Here are a f=w principles you can follow when you write programs for
people. This list cernainly doesn’t exhaust the possible ways you can make
your programs ft for human consumption, but it's enough 1© get you
started:

Give Clear Prompts. To make & easy for your users to see what your
program expects when t wants information, your program must
comiurticale exactly what it wants, Prompts should stand out, be worded
simply, and give the range of choices f there s a range.

Include Error Traps. Prople make mistakes. Your program should caich
errors a5 much as can and give your users a chance o make things right.
Youf program can easily check for the two most common problems: range
errofs and typing mistakes. In a range error, your user types in somecthing
that s beyond the range either of the computer or of the program:

B0 L

110 INBPUT "Your chelee - 0, 1, 2, or 3% "; CHOICE

120 IF CHOICE < 4 THEN GOTC 170 Branches F cholce CK
130 PRINT “Sorry - Choice must be 0, 1, 2, ©r 3.° Erar frap hene

140 PRINT *Please make anether cheice.™

130 FRINT

160 GOTo 110 Goes back br another fry
e b Cormes here:1f OK.

In a3 typing mistaks, your user types something he or she didn't mean, or
makes a simple spelling error:

8 e

100 IMPUT “Name of program to =rasa: "; ERASES

110 PRINT

120 INVERSE

130 BRINT “WARNINGI IF YOU ERASE™ Ghves a'waming
140 PRINT ERASES Reprirts aniry
150 PRINT “IT’S GONE FOREVER! "

180 PRIMT

170 NORMAL

180 INPUT "WIFE oUT THE PROGRAM? (Y/N) "r KILLS

190 IF HILLS <= "¥" TREN HOME: GOTO 100 Cancelsitnctvenfied
200 ..

Leave an Exit Open. Don't forget 1o give uscrs a way owt of your program,
As wonderful as your program might be © use, people do like to do other
things like ecat, go o school, and take vacalions. There are several ways you
can determine ‘when your user has finished using your program.

Peopie-progrom guidelines

For example, you can have a question a the oulsct © ask how many enitries
the user needs o make:

ga LN]

120 INPOUT "Eew many cnecka did you write? =7 CHECKS
110 POR ¥ = 1 TO CHECKS

120 ania

Or you Can give an exit option after each entry:

[« [

100 INPL!T "How much i3 tha naxt check for? S " AMOUNT

110 BALANCE = BALANCE - AMOUNT

120 IRFUT "Another check? (Y/N): *:ANSS

30 IF ANSS = “N" TREEN GOSUB 100U : REM Show balanca and end
1400 iaa

Or you can have the program return 1 a2 menu with an exil option alier
each ¢ntry or series of entries:

o

100 PRINT "1. Enter more names™

110 PRINT "2. Change an #ntIy"™

120 PRINT 3. Print oot all entries™
133 PRINT "4, Leavea thm prog ram"
140 VTAB 22 @ HTAB 25

150 INPUT "™Your choice: ™; CHOICE
160 IIF CHOICE = 4 THEM END

1MW ...

To sec the ruies 11 action, type and run each of the (ollowing two
programs; the first doesn't follow the ruics and the second does:
Nerd Programming (Yuch)

10 INPUT A L1
20 BumM=50M + A

30 PRINT SUM

40 GOTC 10

& Frogramming for People

Fecple Frogramming (Faontastic)

10 OME

2 TRPUT ~Amount to add (0 to Stop)”; AMOUNT : REM Ger amount.
¥ IF A*ZANT = 0 THEN GOTC 130 : REM End if user’s through.

0 PRIXT

3 PRINT »You added®; AMOONT; », right? (Y/Hi=;

E) INPUT mv; ¥N$ 1 REM Entry OK?

M IFYHS =N THEN GOTO 20 ; REm If not, get 1t again.

B S5M = 30M + ANMDUNT : RFM ¥eep Running total...

3 PRIMT

100 pRIKT ~Your ruaning total is ®; SUOM: FEM ...and report it.
11) PRINT

12C GOTO 20 : REM Get another number

1I0 PAONT

40 PRINT ~Flnasl teotal: =; S0M : REM Print the final total.

Humanizing programs isn’t easy

The second program requires more work than the first one. I takes more
planning, more typing, and more debugging © write a good interactive
program (that is, one that talks © people). I is also worth it Real people
make mistakes; wrile programs with that in mind.

it gets easier

The more you learn about programming, the easier i gets Afler you've
been programming for a while, you'll find that what once 100k you mwenty
ines of programming you may do in cnly five lines. By experimenting,
playing, and trying new things with your Apple computer, your
programming ability will grow quicker than you can imagine.

Where do you go from here?

f you decide that programming's not for you, then there's no problem.
You don't have 1© know how an internal combustion engine works o drive
a car, and you dont have © know how © program B use a Computer. Bul
i you've enjoyed going through this twtorial and youve decided that
programming is fun and interesting, you can do lots o things © help
yoursell learn more,

Whem do you go flom hera?

8

Read Books on Applesoft Programming: Hundreds of bocks have been
written on Applesoft, from tutorials w advanced technical documents. Any
decent bookslore has a least a few Applesof itles; the larger stores carry
dozens. The absoluiely indispensible resource s the Applesoft BASIC
Programmer’s Re ference Manual, published by Addison-Wesley (ISBN O
201-17722-6). Wrilten by the experts & Apple Computer, Inc., this s the
official Applesoft book. Your Apple Computer dealer or local booksiore
carries # or can order ¥ for you.

Join an Apple Users Group: Made up of pcople a all levels of expertise,
Apple users groups arc a new compulerist's bes friend. As each member
lecarns something, he o she passes 1 on © 1he olthers. Most clubs have
special subgroups for beginners; virtually all of them have Special interest
subgroups for learning Applesofi BASIC, as well a5 for other computer
languages. (Logo, Pascal, C and Fonh are the most popular ones) Besides
being practical, these groups are a lot o fun.

%+ Pree soflugrel One of the best ways © learn how o witte programs is © look a
somcbody else’s, When you join an Apple users group, youll have access © lons
o public domain software. And many public domain programs are wrillen in
Applesofll.

Programming Classes: You can find programming classes in high schools,
universitics, community colleges, compuer Stores, Specialty schools, and
users groups. Check with the instructor about the level of the class before
yau take it; ¥ possible, 1alk to some graduates. Then you'll be sure that the
instruction is a the level you want

Subscribe © Magarines About Apple Computers: There are dozens of
computer magazines, many Specializing n Apple computers, See ¥ you can
find onc that deals exclusively with your model of Apple. Some Apple
magazincs cover both Macintosh and Apple NI family computers, while
others cover only one o the other. And some are aimed more a& program
users than a program writers. Again, this is an area where a users group
can really help out, Not only can members recommend magazines that
have beginners’ columns, but many clubs have libraries of back issues you
can use,

The most important thing you can do 1 learn to program is—o program.
Vititle silly programs and scrious programs, long and short programs,
programs that arc fancy, and programs that are plain, Just do it Youll
learn more from an hour of mistakes than from a weck's listening n a
classroom. Code 10 your heart's content.

62 Programming for Feople

A parting word

This brief bodk has been a guided exploration through some of the most
important concepts in ¢lementary programming. You didn't learn all of
the instructions in Applesoft BASIC; there are far wo many o them 1o
teach in one short manual. But what you learned here can serve you well ¥,

whenever you write a program, you remember that you're writing for other
people.

And keep on coding!

A parting word 83

Appendix A-

A Summary of Applesoft
Instructions

This & a briefl summary o all the instructions in the Applesoft BASIC language. This
summdry 15 included lor those programmers already proficient in some ather
computer language, bul new 1 Applesol BASIC.

bor a complete description of these instructions, see the Appiesofi HASIC
Progrosnener's Reference Meora! (Addison-Wesley Publishing Company, Inc).

ABS
MBS (=2.717)

Yields the absolute valie (value withou regard B sign) of he argument. The
example yields 2,77,

ASC
Ase (MQUEST™)

Yields the ASCI code for the [irst character in the argument. The example yields 81
(ASCI code for O,

Assignmen! Instruction

LETA 23.567
A5 = “HUMBUG™

Assigns the value of the expression following = o the variable preceding i. 1ET is
optional,

Appencix A

ATN

ATH (.8771)

Yiclds the arc 1angent, in radians, of the argument. The example yields 720001187
{radians}.

CALL

CALL =922

Executes a machinedanguage subroutine a the specified decimal memory address,
The example issucs a linc feed

CHRS

CHRS (65)

Yields the characler corresponding 10 the ASCH code given a5 an argument. The
example yiclds the lewter A

CLEAR

CLEAR

Keseis all variables and internal control information © their initial stale, Program
code is unalf ecred,

COLOR=

COLOR= 12

Sas the display color for ploiling low-resclution graphics. ‘The cxample sds he
display color © green,

CONT
CONT

Resumes program execution afler i has been halted ly $TOP, END, CONTROL-C, or
(somelimesy CONTRONL-RESET.

CO5
L

Yields the cosine of lie argument, which musl be expressed in radians, The example
yiclds -.416146836.

DATA
SHTH OGN EMITE, “CODE 32v, 23.45, -6

Creaies a list of ems for use by REALY instructions. In the cxample, the fiest item is
the string JOFLN SMITH, the second is the string ope 32-, the third is the real
aumber 23 45, and the fourth is the imeger -6.

DEF FN

DEF FN CUBE (X} = X " X * X

Defines a new function for use in the program. The example defines a Munction tha
yields the cube o is argument.

DEL

DEL 23, 56

Delaes a range of consecutive lines from the progeam. The example deletes knes 23
© 56, inclusive.

DIM

DIY MARK (50,3), HAMES (50)

Defines and allocaies space for one or more arrays. The example defines a wo-
dimensional real array MARK, whose first subscripy varies from 0 to 50 and whose
second varies from 0w 3 and a string array NAMES with one subscript that varies
I‘on O1p 50,

DRAW

DRAW 4 AT 50,100

DRAW 4

Draws a shape &t a Spealied point on the high-resolution graphics screen from the
shape table currenily in memory. The first example draws shape number 4,
beginning in colunn 50, row 100, using the current color, scale, and rotation

sentings; the second example draws shape 4 a the st point plotted by HPLOT,
DRAYY, or XDRAW.

END
END

‘Terminates the execution of the program and repxns control 1o the user, No message
is displayed,

EXP

EXP {2}

Yields the mathematical exponential of is argument (tha is, the constant e—
27182818—raised © the power specified by the argument). The example yiekts e
squared, o 7.3890561.

FLASH

FLASH

Causes all texs displayed cn the screen with subsequent PRINT statements by flash
between light-on-dark and dark-on-ight May not work properly for lowercase
letiers (and other characters with ASCII codes above 95) i the computer 1s running in
faclive-B0” mode.

87

2y
FH CUBE {6)

Applies a designated function o the value of the argument expression. Assuming the
definition for the function CUBE given under DEF FN, the example yickls the value
216,

FOR

FCRI=1TCIO
FOR MARK= 0 TO 100 STEP S
FOR NOMBER = 20 1O -20 S5TEP -2

Marks the beginning of a loop, identifies the index variable, and gives the variable’s
starting and ending values and {opiionally) the amount by which i & o change (step)
on each pass through the loop. The first example begins a loop whose index variable
J takes on all values fran 1 1o 10, stepping by 1; the second begins a loop whose index
variable MARK 1kes on values from 0 to 100, stepping by % the third begins a loop
whase index variable NUMBER Lakes on values from 20 o -20, stepping by -2

FRE

FRE (O)

Yields the amount o remaming mermory, in bytes, available o the program. Also
forces “parbage collection™ o dead strings. The argument is ignered, bl must be a
valid Applesoli expression,

GEl
GET ANSWERS

Accepis a single character from the keyboard without displaying & on the screen and
withoul requiring that the Return key be pressed Program execution is suspended
until the user presses a key. In the example, the character typed is assigned o the
variable ANSWERS.

GOSUE

CGOsSUB 250

Fxecuies a subroutine beginning at the designated ling nuinber {50 in the examngle)
GO0

GOTO 400

Serds control unconditionally o the designated line munber (400 tn the example).
GR

GH

Convenis the display w 40 rows of low-resolution graphics wih four lnes of ext a the

bosom. ‘The screen 5 cleared 1) dark, the cursor is moved © the beginning o the
last line, and the low-resolution display color is sar o black.

88 Appendix A

HCOLOR=

HIZOLOR 1

Sds the display color for plotting high-resolution graphics, ‘The example seis the
display color © green,

HGR

HGA

Converts the display wr 160 rows o high-resolution graphics with four ¥nes for text ar
e bottom. The screen is cleared © black and page 1 of high-resolution graphics is

displayed. The conients of the text display, the [ocation of the arsor, and the high-
resoluion display color are unaflected.

HGR2

HGR2

Converts the display 10 fulkscreen (192 rows) high-resotution graphics with no ext,
The screen 1s deared © black and page 2 of high-resolution graphics is displayed.

The contents of the text display, the locaion of the cursor, and the high-resolution
display color are unaffected

HIMEM;:
HIV.EM: 32767

Sas the address of the highest memory localion available 1o the Applesoli program,
incuding #s variables. The example sets the end of program and variable siorage ©
32767. Used 10 protect an area of memory for data, highsresolution graphics, o
machine-language code

HLIN
HLIN 10, 20 AT 30

Draws a horizontal lne in low-resolution graphics, using the current low-resclution
display color, The exarnple draws a line across row 30 from column 10 o column 20,

HOME

HOME

Clears all text fromn the 1en window and moves the cusor w0 the wop-lefi. corner of the
window,

HP LOT

HPLOT 75, 20
HPLOT 48, 115 TO 73, 84 TO 119, 115
HPLOT T 270, 10

Mols a poine or line on the high-resolution graphics screen in the current high-
resclution display color. The first example plots a single point & column 75, row 20;
the second example draws lines Fom colomn 48, row 115 © column 79 ow 84 o

Appendx A

column 110, row 115; the third draws a line © column 270, row K from the last point
plotied with HPLOT, using the color of the last point plored {not necessarily the
current display coler),

HTAB

HTRR 23

Positions the cursor 1 a specified column of the text display. The example moves
the cursor © column 23,

IF...THEN
IF AGE< 18 THEN A = Q : B = 1; C = 2
IF ANSWERS = "YES" THEN GOTD 100

IF N > Mad THEN GOTC 25
IF ¥ > MAX THEN 25
IF B » MAX GOTC 25

Executes or skips one or more instructions, depending on the truth of a stated
condiion. The first example sas A @ B 1, and C© 2 if the value o AGE is less
than 18; the second branches © line 100 ifthe value of ANSWERS is the string "YES™
the last thiee all branch © line 25 ¥ the value of N & greater than that of MAX. In all
cases, § the statcd condition is [alse, execution continues with the next program line,

IM#

Nt 2

Specilies the source for subsequent input. The example causes subsequent input 0 be
read from the device & port 2

INPUT

INPUT 2%
INPUT “TYPE AGFE, THEN A CCMMA, THEN NAME ©»; AGE NAMES

Reads a linc of input from the current input device. The first example rcads a velue
inlo variable A%; he second displays a prompting message and lhen reads values
into variables AGE and NAMES,

INT

INT (98.6)
INT {-273, 16

Yiclds the integer pan of the argument value, The examples yield 98 and -274,
respeclively,

INVERSE
INVERSE

Causes all uppercase lext displayed on the screen with subsequent PRIN'T instructions
© appezr in dark-on-light instead of the usual light-on-dark, FHas unpredictable
offiects on lowercase pext,

=1 Appendix A

LEFTS

LEFTS (“APPLEGOFT®, %

Yields a specificd number of characters {rom the beginning of a string, The example
yl'c]d_ti the string APPLE,

LEN

LEN [“NEVER A DULL MOMENT")

Yields the length of a string in characters. The example yiclds 19,

LET

See *Assignment Instruction_ ®

LIST

LIST

LIST 158
LIST 200-330
LIST 200, 300

Dsplays all of pant of the program on the screen, o writes & 1© the current oulput
device. “The first exanple lists the entire programy; the second lists line 150 only; the
last oy list lines 200 10 300 inclusive,

LOAD

LOAD DEMO

Reads a program ine menory (rom 2 disk. The example reads a program froin a
disk file named DIMO.

LOG

LOG {2}

Yields the natural logarithm of the argument. The example yields 693147181
LOMEM:

LOMEN: 24576

5cs the address of the lowest memory location available 1o the program [or variable
storage. The example sels the beginning of variable storage b 24576,

MIDS

MID$ i"AFM APPLE A DAY", 4, &)
MIDE (“AM AFPLE A DAY", 4]

Yields a specified number of characters beginning & a specfied posiion ina given
string. The first exanple yiclds te suwing a2 #LE; the second yiclds the string A pLE A
BRY.

Appendix A

9

NEW
NEW

Clears the current program [rom memory 2nd resets all variables and iniernal
control information 1o their initial states,

NEXT

KEXT
NEXT INDEX
NEXT J, 1

Marks the end of a loop and causes the loop © be repeated for the nexd value of the
index varable, as specified in the corresponding FOR instnucton. The [first exainple
ends Lhe most recently entared loop; the second ends the loop whose index variable
5 INDEX; the 1hird ends the pair of nested loops whose index variables are J and 1,

NORMAL
FORMAL

Causes all ext displayed on the screen with subsequent PRINT instruclions o appear
in the usual light-on-dark; cancels the effizcts of INVERSE.

NOTRACE

NOTRACE

Stops the display of line numbers for each instruction executed; cancels the efiects of
TRACE.

ON ... GOSUB

o4 1D GOSUB 100, 20O, 23, 40RS, S0

Chooses a subroutine o excare depending on the value of an expression. The
example transfzrs control 1o the subrouting beginning & line 100, 200, 23, 4008, o
500, depending on wlicther the value oL ID i 1, 2 3, 4, o 5 il 11} has none o these
values, execulicn continues with the next inslruclion.

ON .. GOTD

N ID GOTO 100, 200, 23, 4005, 500

Lliooses a line nuinber 10 branch 10 depending on the value of an expression, The
exanple transfers contrel © line 100, 200, 23, 4005, o %00, depending on whether
lhe value L D is 1, 2 3, 4, o 5 f 11> has none of these values, execution conuimues
witli the next instructon,

ONERR GOTO

ONERK GOTQ 300

Replaces Applesofl’s normal error-handling mechanism with a subrouting beginning
al a specified line number. The example establishes an error-handling subroutine
beginning a ling 500

92 Appendix A

PDL

FDL {113

Reads the current dial setting on 2 designated hand control, The example reads the
dial on hand control 1.

PEEK

PEEEK (3T}

Yields the contents of a specified location in memory. The example yields the
contents of location 37, which containg the current vertical position of the texi cursor
on the display screen.

PLOT

FLOT 1Q. 20

Plots a single block of the curent display color a a specified position on the low-
resolition graphics screen. The example plots a block at column 10, ;ow 20.

POKE

POKE -16302, ©

Stores a value ina specified location in memory. ‘The example stores the value Qazt
location 49234 (65536 - 16302), causing the display ko switch from mixed graphics
and text © Full-screen graphics.,

FOP

POP

Removes the most recent return address from the control stack, causing the next
RETURN instruction © send control © the instruction following the second most
recently executed GO3SUB,

POS

POS (0]

Yields the current horizontal position of the cursor on the text display, The
argument & ignored, but must be a valid Applesoft expression,

PR
PR¥ 1

Specifies the destination for subsequent output. The example causes subsequent
oulput © be sent © the device a pont 1,

PRINT

PRINT
FRINT A%, "X = m: ¥

Writes a ine of output o the current cutpur device, 'The first example writes a blank
line; the second writes the value of variable AS, followed af the next avallable iab
position by the string "X = | followed immediately by the value o variable X

Appendx A

READ
READ A, B% C5

Reads values from DA'TA instructions in the body o the program. The example
reads values into variables A, 8, and C§.

REM

ri THIS A REMARK

Includes remarks in the body o a program for the benefit of a hutnan reader,
RESTORE

RESTORI:

Cayscs the next READ instruction excculed o begin reading & the first item o the
first DATA instruction in the prograin.

RESUME

RESUME

AL the end of an error-handiing routine Gee ONERR GOTO), causes resumption of
the prograin & the beginmiog of the insimuction in which the error ocaurred,

RETURN

RETURN

The last instruction in a subrounne returns contreld [ran a subroutine © the
instruction following the GOSUI that called the subroutine.,

RIGHTS
RIGHTS ("APPLESGFT", 4

Yields a specified nuinber of characters fran the end of 2 sidng. The example yields
the string SOFT.

RND

RiD (1)

Yields a random number between 0 and 1. Zere and negative argument values wield
repealable sequences d random, numbers.

ROT=
ROT:=» 186

Sa1s the angular rotation for high-resolution shapes o be drawn with DRAW or
XDRAW. The exatnple causes the shape 1o be rotated 90 degrees clockwise,

] AppandixA

RUN

RUN
RUN BOO
RN CEMO

Executes an Applesoll plogram. ‘The first example executes the program currently in
memory from the beginning; the second execuies the program in memory, starting
a kne 500; the third loads and execules a program from 3 disk file named DEMO,

SAVE

SAVE [CEMG

Writes the named Applesolt program currently in memory 10 a disk. The example
writes the plogram to a disk fle named DEMGQ,

SCALE=
FCALE= 10

Sets the scale facter for high-resolution shapes © be drawn with DRAW o XDRA W,
The example causes the shape K be drawn ten limes biggel than the definition given
in the shape able,

SCRN

SCRN (19, 20!

Yields the code fol the colol currently displayed a a designated position on the low-
reselution graphics screen. The cxample yiclds the ade for the color & column 10,
row 20,

SGN
8GR t-144)

Yields a value of -1, & or +1, depending on the sign of the argument. The example
yields -1,

SIN

51N 12

Yields the sine of the algumenl, which must be expressed in radians. The example
yields 909297427,

PC
SPC @&

Infoduces a specified numbel of spaces nro the line being written by a PRINT
instruction. ‘The example wriles cight spaces.

SPEED=
SPEEDw 501

Sels the rale a which ext characters are © be sent 1o he disply soreen or other
input/oulput device, The slowesl rae is O the lasest ks 255,

Appendix A

S5aR

S5QR{2)

Yields the pasitive square root of the argument; he example yields 141421356,
STOP

STOP

Terminates the execution of the program and relurns control o the user. A message
& displayed identifying the program line in which the STOP instruction appears.

STRS
STRS (12.45)

Yields a string representing the numeric value of the argument. The example yields
the string "12.45°",

TAB
TAB {23}

Positions the ext cursor al a specified position on the outpul Ene duning execution o
a PRINT instaction. The example maves the cursor o column 23,

TAN

TAN (2]

Yields the angent of the argument, which must be expressed n radians. The
example yields -2, 18503987

TEXT
TEXT

Converts the display to 24 lines of lext, with the cursor positoned a the beginning of
the botom line.

TRACE
TRACE

Causes the line number of each instnuction © be displayed on the screen as it s
executed.

UsrR
DSR 13}

Executes a machine-language subrouling supplied by the user, passing & 2 specified
argument. The subrouline is entered via a JMP (jump) instruction stored a1 addresses
S0A through $OC hexadecimal. The example passes the argumem vale 3.

Y& Appendix A

VAL

WAL {v-3. 7Edm")

Yields the numeric value represented by the siring supplied a5 an argument. The
example yields -37000,

VLN

VLIN 10, 20 AT 30

Draws a vertical line in low-resolulion graphics, using the current low-resclution
display color. The example draws a line down column 30 from row 10 1 row 20

VTAR
VIAB 15

Pasitions the cursor 1© a specified row of the text display. The example moves the
cursor o row 15

WAIT

WAIT 42347, 15
WAIT 43347, 13, 12

Suspends program execution until a specificd bit pattern appears at a specilied
memory locaton. Used 1o wait [or a status signal from a peripheral device. The
second. and (optional) thild arguments are masks: the second specfics which bits of
the designated location are o interest, the third specifics the values © be tested for n
those bits. The first example suspends execution unlil a 1 bit appears in any o the
four low-ordef bit positions of location 49347, the second waits for a 1 bit in posilion
Gor1ora@bin posiion 2 ¢ 3,

ADR AW

XDRAW 4 AT 30, 100
XDRAW 4

Draws a shape from the shape uble cufrently in memory al a specified point en the
high-resolution graphics screen. Each point in the shape 5 plotted using the
complement of the color curfently displayed al thal point. Typically used o erasc a
shape already drawn. The first example erases shape number 4, beginning in
column 50, row 100, using the currem scale and rotation setlings; the second
example erases shape 4 at the last point plotied by HPLOT, DRAW, o XDRA'W.

Appendix A

o7

Appendix B

Reserved Words

Table 131 shows a list of Applesolt’s reserved words, In most cases these character
sequences cannot be used as, or embedded in, variable names.

The ampessand character (&) is reserved for Applesoft's intermat use and for user-
supplicd machinc-language rowtines,

XPLOT is a resaved word that does nol comespond 10 a current Applesolt statement.

Some reserved words are recognized by Applesoft only in cetain contexis:

COLOR, HCOLOR, ROT, SCALE, and SPEED} are interpreted as reserved words only

if the next nonspace character is an equal sign (=). This is of lile benefit n the case
o COLOR and HCOLOR, as the embedded reserved word OR prevents their use as
variable names anyway.

HIMEM and LOMEM are interpreted as reserved words only ¥ the nex nonspace
characler 5 2 colon (),

IN and PR are inlerpreted as reserved words only ¥ the next nonspace characier is a
number sign {#)

SCRN, SPC, and TAB are inmerpreted as reserved words only ¥ the next nonspace
characler 5 a left parenthesis, (

ATN is interpreled as a reserved word only f there is no space between the T and the
N. ¥ a space occurs between the T amxd the N, the reserved word AT is interpreted
instead of ATN,

Appendx B

e

TG s ntepretcd vass rescrvid word unless U E preceded By an A ind the 154 spaas
bertween e 'Toand the Q. Tn thae casey the reserved word A'T Is ok oreled tssead of

"

Even 1 ovou donicmbesd reseomenl weork nowour varfable tames, they can sooeslinnes
; ! ¥

papuapunezpectedly and canse problerns, Toe example, e shalment

LUd PR B o= TEET g3 L e 15

& irkcmreled as

100 FER & = LOF 0 RGREFT T L5

and cavses & syniax ewor, o fowce tne oo mlesrpreialion, we parentheses:

e ForA — ITGETY e frmetr o s

lnble -1 Applosef Resorved Words

5 ELASI M (8 SA VK
F INw T3 SOCALE
AT BLEK S0 RI
CET LAt 15 PLCYT S0M
ALL {05101 [BTN SILEIATD
CIHRY OO LET PO T
CLEAR Gl L1sil P 3
COLOR LEIALY BRIN T RILIEEI
LT Lo PR SN
£ [0 Lo3ndlin WL
HOR T
DA A Fi1R2 KH AL STORE
Y I ME<S IR BECALL STES
B 1111 RS T et
IR AN HOkM T RIENTIME
LA YR HpLCxT MEYT RETLEN Tt
HTANl T BICILL IS LA
BN TN LAL [1 TEXT
I kAT RO '
YL RACTE KN i)
el

fixh Arpendix B

45R

YAl
vy
VIATL

WAL

XuLea®
XAy

Glossary

address: A number used b identify something,
such as a localion in the compuler’s memory,

algorithm: A stepby-step procedure for solving a
problem o accomplishing a lask.

Apple I A family of persenal computers,
manufactured and sold by Apple Computer, Inc,;
generic name for all compulers in the series.

Applesoil; An exiended version df the BASIC
programming language used wilh he Apple 1
family of compulers and capable o processing
numbers in Moating-point form, An interpreter
for creating and excculing programs in Applesof’:
5 buill into the Apple [system in ROM,

arithmetic operator: An operator, such as +, that
combines numeric values 0 produce a numeric
resill; compare relatdonal operator,

BASIC: {igpinriers All.prrpose Symbolic
Instruction Code: a high-level programming
language designed o be casy © learn and usc

branch: To send program execution © a line or
instruciion other than the next in sequence,

bug: An error in a program that causes i not 10
work as inténded.

catalog: A list of 4l files stored on a disk;
sometimes called a directory,

characier: A letier, digit, punctuation mark, o
other writicn symbol used in printing or displaying
inf2rmation m & form readable by humans,

code: (1) A number or symbol used © represent
same picce of infermaton ina compact or easily
processed foom, ¢2) The statements or
instnICions making Up 4 program,

command: A communication from the vser 1© a
computer system (usually typed from the
keyboard) directing it 0 perlom some immediat
action,

compuier: An clectronic deviee for poforming
predefined {programmed) computilions a high
speed and with great accuracy

computer Sysem: A computer and s associled
hardware, firmware, and soltwarc

cancatenate: Literally, "to chain wgcther™;
combine two o more Srings o : single, longer
string containlng all the characters inthe original
strings.

conditional bramcls A branch that depends on
the truth of a condition or he value of an
expression,

control variables sce index variable,

counters A variable wsed 0 keep rack of passes
through a logp, Counters ofien have he form X =
X+1

crash: When a program uncxpectedly ceases
Operaling, possibly damaging or desiroying
information in the process.

curser: A marker or symbal displayed on the
screen that inarks where the user's next acuon will
take offect «r where the next character typed from
the keyboard wil appear,

debug: To iocae and correct an error ar the causc
of a problem o malfunction ™ a computer
system, Typically used to refor w0 sofiwarerelaied
problems,

Glossary 101

deferred execution: The saving of an Applesal:
program kne for execution a a later time as part of
a complete prograin; cccurs when the ¥ne 5 typed
wih a line nuinber, Compare immediate
execution.

dday loop: A loop whose pupose is i slow down
the execulion of a progran.

define: To assign a value © a vanable,

disk: An information-storage inediuin consisting
of a flat, circular inagnetic surface on whicli
inforination can be recorded in the lorm o sinall
magnenz.ed spots, shinilarly © the way sounds are
reccrded on lape,

disk drive: A peripheral device tha writes and
reads information on the surface of a magnelic
disk.

dispLay: (1) Inforination exhibited visually,
especially on the screen of a video display device,
(2 To exhibit infonnation visually, (D A display
device,

display device: A device that exhibits infermaucn
visually, such = a 1elevision receiver or video
Inonitoer,

display screen: The glass or plastic panel on the
(ront of a display device, on which images are
displayed,

edit: To change o inedify; lor exainple, o insert,
reinove, replace, o nove ext n a4 document,

error message: A message displayed o printed 1©
notily the user of an eror o problein in the
execulion o a prograin,

exccute: To perform o carry oul a specified
aclion or sequence © actions, such as those
defined by a prograin.

file: A collection o infonnation stored as a
named unit on a peripheral sterage mediuin such
as 2 disk

filename: The nzme under which a file s stored
on a disk.

o2 Glossory

firmmware: Name applied © programs stored n
read-ortly memory,

format: (1) The lonm in-which information 1s
organized o presented, (2 To specily o control
the lfonnat o infonnation. (% o prepare a blink
disk w0 reccive information by dividing s surf ace
o racks and sectors; also Initiallze

graphics: (1) Information preseated in the Firm
of picures or unages. (2 The display of pictures
o inages on a compers display screen
{ompare text

hacker: An expericnced progranmer,

hand control: An optonal perpheral device tha
can be connected o the Apple I's hand conirol
connector and has a rotating dial and a push
button; typically used 1o control game- playing
programs, but can be used in more serious
applications a5 well,

hang: For a progran or sysicin 10 “spin its wheels®
indefinitcly, perfonning ne usefid work.

hard copy: Infonnation prinied on paper loe
human wse,

immediate execqurion: ‘The execudon of an
Applesolt prograin line as soon 38 & 6 typed,
ocars when the line is typed ‘without a line
number. Coinpare deferred esvoution.

index variable: A wvarable whose value changes on
each pass through a locop, ofien called controt
variabre or loop variable

infinite loop: A section of a prograin that repeats
the same sequence d actions indefiniely,

information: Fadts, concepls, O nstructions
represented 'n an organized fom,

initialize: (1) To sel 10 an nitial stale a value ‘'n
preparation > some coinputation. (2 ‘T
prepare a bBlank disk © receive infornalton by

dividing 15 surface into tracks and seciors also
format.

input: (1) Information transferred into a
computer {ram some external source, such as the
keyboard, a disk drive, or 2 modem, (2) The aa
o process of transferring such information,

input variable: Varable whose value is assigned
by the user via an INPUT instruction, a opposed
b e whose value is assigned by the programmer
using an assignment o Similar instruction.

instruction: A unit of a program in a highlevel
programming language that specifics an action for
the computer 10 perform, typically corresponding
i several instructions of machine language,

interactive: Operating by means o a dilog
between the computer sysiem and a human user,

interactive progpramming: Gencrating programs
that operate by means o a dialog between the
computer system and a htiman user,

interface: The devices, riles, or conventions by
which cne compenent of a system communicales
with another,

inverse video: ‘The display of 1ext on the
computer's display screen in the fiorm of dark dots
on a light (or other single phosphor colord
background, instezd of the usual light dots on a
dark background.

keyboard: The sa d keys, similar © a lypewrier
keybeard, for lyping nformation o the computer.

langnage: See programming Lunguage.

line: See program line

line number: A number that identifies a program
line » an Applesofl program,

load: To wansfer information from a peripheral
storage medium (such =5 a disk) inio main
memory for use; for example, 10 wansfer &
program Nt memory for execution.

lop: A seclion of 4 program that 15 execued
repeatedly until some condition % mel, such as an
index variable reaching a specified ending value,

Ioop vadable: See index varinble,

low-resoludon graphics: The display o graphics
on the Apple I's display sceen as a sixieen-color
array of blocks, 4 columns wide and either 40 o
48 mows high.

memory: A component of a compuler systern (hat
<an store information for later retficval, see main
memory, random-access memory, read- onty
MIEINOry.

menw: A lig of choices presented by a program,
usually on the display screen, from which the user
can select

mode: (1D Aany of séveral ways a computer
inerprets nformation. (2) A state of a compuler
or system that determines its behavior.

ocsted loop: A loop conuined within the body of
another loop and executed repeatedly during each
pass through the containing loop.

nested subroutine call: A call o a subroutine fm
within the body o another suhroutine.

numerie variable: scc variable,

pperator: A symbol or sequence of characters,
such as+ or AND, specifying an operalion 10 be
perf prmed on one or more values (the operands)
o produce a resull

output: (1} Informalion transferred lmom z
corpuler @ some exiernal desfination, stuch as
the display screen, a disk drive, & printer, or 4
modem. (23 The act or process of transletring
such information,

pass A single execution of a loop.

precedence: The order in which cperaors are
applied n evaluating an expression,

printer: A peripheral device that writes
inforroation on paper in a [om easily readable by
humans,

program: (1) A sa of instructions that describes
actions [or a compuler o perform in order 10
accomplish some sk, conflorming © the rules
and convenlions of a particular programming

Glossary 03

language. In Applescli, a sequence of program
lines, each with a different line number, (& To
wrile a program,

program line: The basic unit d an Applesolt
program, consisting of one or more instructions
separated by colons (3,

programmer: The human author of a program;
one who wnles programs,

programming:; The activity of wiling programs.
programming banguape: A set of rules or

conventions for wnting programs.

prompt: (I} To remind or signal the user that
some aclion 5 expected, typically by displaying a
distinctive symbel, 2 reminder message, or a
menu of choices cn the display screen. (2 An
instruction o remmder message that appears on
the display screen

prompt character: (1) A 1ext charader displayed
on the screen o prompl the user for some action
Often also identifics the program of component of
the sysiem that & doing the prompling: for
example, the prompt characier | & used by the
Applesolt BASIC lnterpreter, Alsa called
prompling character. (9 Someone who 5 always
O lme,

prompt message: A message displayed on the
screen o prompl the user for same action, Also
called prompling message,

RAM: See rundomaccess memory

random-access memory: Memory whose
conients can be both read and wiitien; oflen
called read-write memory. The contents of an
individual location in random-access memory
can be referrod do i @0 arbilrary of mindom
order, The information contained in this type of
memory is crased when the computer's power is
wmarned off, and is permanently lost unless & has
been saved on a inore permancnt storage
medium, such as a disk. Compare read.only
memory,

104 Glossary

reak To lransfer information into the ¢ompuler's
menory [rom a sowce external © the cownpuler
such as a disk drive or modem) of N0 the
Computer's processor from a sourCe external 1o
the processor (such as the keyboard of mmin
MEMOTY).

read-only memory: Memory whose comenis can
be read i not writlen, 1sed bor sioring firmware
[nfonmation s written inle read-only menore
once, dusing manufaciure; ® then remains there
permanently, even when the compulers power s
tumed off, and can never be erased or changed,
Compare random-access memory,

read write memory: Sec randomaccess memory,

relational operator: An opernitlor, such as>, tha
compares numernic values b produce a logical
result; compare arithemetic operator,

reserved word: A word or sequence of charaders
reserved by a programming language [or somc
speciat use, and therefore unavailable as 2 variablc
name in a program,

ROM: See read-only memory.

routine: A pat of a program that accomplishes
some task subordinate o the ovenall lask of the
program,

run: {1) To excoule a program, (2) To load a
program o main memory from a peripheral
storage mediunt, such as a disk, and exccute 1L

save: To transfier information from mgin memory
i a peripheral storage medium [later use

screen: Scedisplay screen,
starting valoe: The value assgned o the ndex
variable on the [irst pass Ihrough a lpop.

step value: ‘The amount by which the index
variable changes on cach pass through a bop

stepwise refie-ment: A technique of program
development in which broad sections of the
program arc laid om first, then elaborated siep by
sicp uniil 2 complele program '8 obiained

string: An iem of information consisting of a
sequence o text characters.

string varinble: sec variable.

subroutine: A part of a program tha can be
executed on request from any point in the
progeam, and that returns control I he point of
e request an completion.

syikax: The ndes governing the strucure of
stalements o instruclions in a progranming
language,

system: A coordinated collection of interrelaled
and inleracting parls organized © perfonn sone
Fanction or achieve some purpose.

ext: (1) Information presented in the fonn of
characters readable by humans. (2} The display of
charaeters on the Apple II's display screen.
Compare graphics.

user: The person operating o controlling a
comnputer system,

user interface: The rues and conventions by
which a compuler systein comnunicales with the
Person operaling ¥

value: An item of infonnation tal cn be stored
in a variable, such as a number or a string.

varlable: (1) A location in the computer's
menory where a value can be siored. (2 The
symbol used in a program to represent such a
location

wraparound: The aulomatic contiruation of (ext
fran the end of one line 1o the beginning o the
next, a8 on the display screen or a printer.

write: To transfer information from the computer
10 a destination exiemnal 1o the compuier (soch & a
disk drive, printer, or modem) or fromn the
coinputer's processor 10 a destinalion exiernal ©
the processar (such a3 main Memnory).

Slossary

105

Cast d Characters

5 (dollar sign) 2

% (ampersand) 99

v {plus sipn} B-11, 2

- (subtraction operatar) 8-11
{periody 30

* {muluplication opecrator) 811

¢ (chivision operator) 8-11

: feolon) 6566

; {semicofon) 19, 3@

< (kss than operatory %

<= (oL greater than operator) 39

<> [pot equal 1 operar) ¥

= {equal signd 12 39

> (greater than operator) ¥

>= (ot less than operaon) 39

Hguostion mark) 18, 19-20, 40

| {right brackel prompl) i, x

A

ARS instruction 8

adding lines 20

add.uonopcmlor(+) B-11
precedence and 10— 1

algorithms 66

ampersand(&) 99

animanon 56-57

arthmeuc 511

arithmetic operalors 89

arrow keys 4

ASC insruckon &

assignment nstrudions 18, %

AT instruction 48—49, 99 00

ATXN instruction 85, 99

IndeXx

branching Sec GOTO instruction;
[F... THEN ‘nstruction
bugs 4%
See also debugging: errors

C

CaLL mstruction 86
catalog 29
CAT command 29 31
cenorng text 751
checkbock balancing

program 66-68
CHRY nstuction 86
clearing screen 20-2%
CIE AR inmtruction 86
code See programming; programs
colon () 566
COLOR= instruction 47, 86 99
cobr praphics 44-51
color monitor 44
comments See REM Insiruciion
compuler fanguages Wi
concatenation 22
condiilonal branching

See IF,, , THE'W instruclion
CONT imstruction 80
Conuwol-C 37
Control-Resat x
controlled bops 54-58
COS instruction 86
coumers 8

D

DATA instruction 86
debugging 4-3, 14 2325
by prinung 32-33
See also cmrors
doferred execuvon 24-25
DEF PN mstruction Bo
delay loops 5758
DELETE command 32
Delete key 4
DEL insirucuon B7
DIXT instruckion 87

disk drives 28
starting up without x
disks 28

display, 40-coluna 11, 70

division operalar (/) 8-11
precedence and 10-10

dollar sipn (§) 22

drawing knes 4850

DCRA Y instruction 57

E
editing programs 4-5, 20
END Instruction 39, 63-64, 87
equal sgn {=) 12
equal to(=) operator B
offofr moessages 3-4, 24-25
REENTER B
RETURN WITHOUT GosuB 04
SYNTAX ERROR 3—4
TYPE MISMATCH M
ersors 4-5
rapping 41, 79
See also debugging
execulion 3 24-25
cXii opliions, desighing 79-BO
EXP inswruction 87

Inclen, 107

F

files See programs
H.ASH instruction &7
Fis instruclon 57
{ommatling screens 70-76
FOIMNEXT Instruclon 54-58, BE
S1IP instruclion and 56-57
#J)-celumn display 11
HTAL instructicn and 7
fractions @
IR insiruction 88

G

GIIF nstruction EBR
GOSUBNUNTURN
inslruction 62-63, 88
GOYO instruction 36-37, G3, £8
B THEN instruction and 40
GR instruction 44—is, 88
pgraphics

FORMSEXT instruction and 55-57

lw resolution 44-5 1
R&D insuvucton and 50-51
variables and 4748
graphics mode 4445
gredler than(>) opcerator 39

H

hard copy See printing
HCOLO= nstruction 88 99
1G] irswruction 8%

1IGIR2 instruction 30
HIMIEN: instruction 89, 99
HLIN instruction 489, &2
BOME instruction 20-21, B9
HELOT Instruction 89
HTABR instruction 70-73, 90

108 Inclex

L4 K

W CHERInsinIehion 37 -41,54,90)
GOTC insduction and 4D
immediate exccution 24-2%
IN® instruction 90, 99
incrementing counters 48
il nne loops 37
INPLIT instruciton 18-20, 73, 90
string variables and 3
input vanable 18
instruclicn{ 8
assignment 18, 85
multiple 65-G6
summary of 85-97
See also spectfic instruciion
neractive programmnmg 18 78481
IN°T instrucnon 90
INVIIRSL instruchon =79, 90

L

languages Wi
LEFIS Instruction 9
Lef~Arow key A
N instruction 75-70, 91
k:ss than (=) operator 3
LET instructlon 91
fine number 2 3 20
lines

adeding 2D

drawing 48-50

runover 11
Us1' command 21-22, 9l
LOAR command 29 31-32, ™
LOS instruction 91
ORI innlruclion 91, 99
loops 36-37

conrolled 5458

delay 57-58
lowarease 3

INVERSE instruction and 79
low-resclution graphics 44-51

bt |

memofy Sue RAMN,; ROM

menus 71-73

Milys Instruction 91

modes 4

modular programining 62-68

monilors M

monachroine monitar #

multiple instructions 65-66

muliplicauon operaor) 8-11
precedence and 10-11

N

naming
numerie variables 13, 28
programs 29-30
string variables 23
MW command 2-3, 92
NEXD instruciion Seoe [ORANEXT
Instruclion
NORMAL instrucuon 74-75, o2
not cqual © (<) operator 39
nol greales than(<=) opcrater *
not less than{>=) opcraor 39
NOTRACE instruciion 92
numbers, as Exe 2
nurmerie variables 11-14
raming 13, A

O

N 20
ONERRU GOTC instruction 62
(N...GCSUB instruction 92
(W,..0OTO instruction 92
operators
arithincelic §-9
relational 38-01
order o precedence %11
parentheses and 10-t1
arganizing programs 66
O instriction 99

P

p arentheses
precedence and 10— 11
reserved words and S99-100
RO imstruction and 50
PALISE program G263
DL nswucton B
PEEK instruclicn 5
peried €3 n Flenames 30
PLOT instruction 4546, 48-19, 5
plus sg'n (+), string variables
and 22
POKE instruction B
POP msiruction S5
POS instruction 93
PR& command 33, 93, 99
precedence 9-11
parentheses and 10-11
printing 32-33
PRINT instruction 2-4, 14, 19, 93
arithmetic and 8-11
queston mak (D and 40
program line 2 3 20
Programming viil-ix
interactive 18, 78-81
madular 62-68
resources Bl-82
programs viii—~(x
editing 4-5, 20
menus and 71-73
naming 29-30
organizing 66
printing 32-33
saving 29-30, 38
“uset-frizndly” See inleractive
pregramming
prompt character (D X, x
prompts 1920, 73
designing 78
nverse 4-75
public domain soliware 82

(=

queshicsy mak () 18, 19-20
MRINT instruction and 40
fjutation marks 8

R

RAN (randomeaccess memonyd X
rAnge enors 79
FAD instruction 94
AEENTEF. message 23
relational operalors 3841
REM instruction 41,94
reserved words 14 20 90-100
RESTORE mstrucuon ‘™M
RESUME instrucuon 94
RETURM anstructiion
See GOSUBRE TLIR.™
instnuction
Rewrn key 2-3
RETURN WITHOUT GisUB
message 64
RIGIITS mstruction 94
Right-Armow key 4
D Instructicn 94
graphics wnd 50-51
ROM {read-only momory) 28
ROT= instruction 94, 79
1N command 2-3, 95
runover lines 11

5

SAVE command 29-30, 95
SCALE= instmiction 95 99
screen(s)
clearing 20-21
formating 70-76
low.resolution 45—46
SCRX instruction 99, 99
semicolon () 19, 32
SGN instruction 95
SIN mstruction 95
software, public domain &
Space bar 4

SpaceMaker 73-74

spaces 9

PCL instruction 95, 99

SPEED= instruction 95, 99

SR instruction 96

slarung up ix-x

STEP instruction 56-57

STOP instruction 96

STRS instruction 9%

strmp vanables 22-23

subrautines Oz-568

subiraction operator(-) 8-11
precedence and 10-1)

SYNTAX ERROR messagre 31

T

TAB(instruction 94, 99

abs See HTAB instruction;
TAB(insuuction; YTAR
instruciion

TAXN instrucifon 96

elevision set 4

wext 22-23

ceplering 75-76

TEXT insiruction 46, 96

tox, mode 46

THEW instraciion SeelF, THEN
INSIrUClon

TO instrudion 100

TRACE instruction: 96

irapping errors 41, 7%

TYPE MISMATCAH message 14

Wping mistakes % 7%

]

uppercase 3
INVERSE instruction and 5
~user-{riendly” programs
See mierachive programming
users groups 82
LISR instruction 96

Vv

VAL instructien 97
variables 11-14
FOIBNEXT instroction and 55
graphics and 47-48
input {8
naming 13, 23
numeric 11-14
string 22-23
VLIN instruciion 48—i9, o7
VTAR Instruction 70-73, 97

W
WATT instuction o7

> J

XA W instruction 97
XPM.OT instruction 99

1a Inclex

B Please contacy yowe aithotiestl Apple deplor Wi s00 Fave guesinms Jbome sous Apgle ettt Dealegs an [[B e] e e [= o e] |

sratitnet Ty Appie Compuer pid am gven ey resonmmes wdandbe seroee o swppon b bl domle proniives | e o o 5 e o o o
wrot deedl e oipe ol oot red Az Guedler i s e callinoifitrer WO G AHI. ()) v] o e o | e | e |])
([e i o] i] [e (o o

B ould you [tke g ekt Aprply slvaati ot Pk bt 0 poecadine? Aften ot borvs Tond A sodaranitivy o e this o e e e (1§] o
oty s swsidlal Dk i Bsear bown vou Yos cin belp s ioampiove o produces by sespandug e e e | o e s | e [] s e]
ppriesloyrstion Bl gad] B el Afyionitbale esiocs LR Qi JEAbe glghe @O ®2 Teodd e L 11 v Sl e s s Y I g, e | s |

v rvome i e resrRitine 18 et etk al) (0 TaRiss VR Ty Pt dhetsl Al e il matd bt

appite Includesddmmmal pages of commmans i pin wnk e e e e s A e Lo L Lo

Plaase Do Net Mark Above This Line

1. % har is vour ovesall saustacumne winht A Tomcd of sppdesod bidaitc s {1 =poor . &=uxeullent) m | OO o0
& Dl suwe et progemmongs apiterid R Yot ot (3=, 3= - 2 OO
4 Weasilel o b el fragpmmimnds i 404 P e oFAfiale St A3 0E Tan] ok ity included? (1=no, 2 = yes) LB R R R
A0V e, Wy Gl o (gt L= ppobibiy, @=nit sale, 3 =cmplover, 4=cducation) B 4 ooy
£ Whitch Appile onmpuier are you g | P=Appie oy, 2 Apple Tle) | Sl s W)
o, Werw medy povor eepeeeiiroces e youd il wtigesomputers? (1=none &= extensive) C Hluslsnls nlxuls njs n;
Tkt i Yot Boaissholel sk SO oAl st BAsie? O = male adulr, 2 female aduly 3=male child, |_IE-Annisols aimw
A= femmle chifi
W Mmool A felreds o Ande) SRR Bine post ol 8 it mamanil, 2 < sped |1 acssions) m A OI0D
L Doy ey it 2 ._._E_...a.ﬂ..f..i#ﬁ SO i peo ioid il E=cliffical .. &=rvery cusy) N e OO OO0
1. tow would you nie the ongmasiim oba Touwch of Aptteagit SlsiC (1= poor . &=cxcellent) [Jligsslsols njrsjis nie o
i o beliful weese thie eatmple rogmiin® o3 =t bflplal - &=very helpful)) OO oo oo
B2 IV b e W/l e Tl G4 W Sanmipiay, dalig gich example as 4w pyesefiien)? (1 =none ol the tme, m OO/
= weumve ol v i 3=t of (e Hitee, S=allaf e nme) .
I3 T it Cloprrioe LS 40 1 PNTEND st sl Ty b Tl A A S LN e sy gt eratinns? I 14 OO0 OO0 0 00 00
AT=low &= high) o
10 e DD o DR e b o Tyl o AfanfeSeft SISl .I 14
|
8. W0hath I oty (L0 Il ittt AL KR FEAS [-5
Frﬂm ”"u.ﬂuﬁn?_n_mumnz:m Y OO, incONMOene e yoilh mesy T aedianeded] sl the materfils. (Page numbuees are G
4T, Wit suigsstians &y yind v o Sgriviig A Tl o Apntesiif Ba8ics -

